Highly connected coloured subgraphs via the Regularity Lemma

Henry Liu
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom

Yury Person
Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany

Abstract
For integers \(n, r, s, k \in \mathbb{N}, n \geq k \) and \(r \geq s \), let \(m(n, r, s, k) \) be the largest (in order) \(k \)-connected component with at most \(s \) colours one can find in any \(r \)-colouring of the edges of the complete graph \(K_n \) on \(n \) vertices. Bollobás asked for the determination of \(m(n, r, s, k) \).

Here, bounds are obtained in the cases \(s = r = 1, 2 \) and \(k = o(n) \), which extend results of Liu, Morris and Prince. Our techniques use Szemerédi’s Regularity Lemma for many colours.

We shall also study a similar question for bipartite graphs.

Key words: Regularity Lemma, Graph Ramsey numbers, \(k \)-connected graphs

1. Introduction and results
For basic definitions from graph theory we refer the reader to [3]. Let \(n, r, s, k \in \mathbb{N} \) with \(s \leq r \) and \(k \leq n \). Given a graph \(G = (V, E) \) with \(|V(G)| = n \), and an \(r \)-colouring of its edges, \(f : E(G) \to [r] \), define

\[
M(f, G, r, s, k) := \max\{|V(H)| : H \subseteq G, |f(E(H))| \leq s \text{ and } H \text{ is } k\text{-connected}\}.
\]

That is, \(M(f, G, r, s, k) \) is the order of the largest \(k \)-connected subgraph \(H \) in \(G \) whose edges are coloured with at most \(s \) different colours in the \(r \)-colouring \(f \). Let

\[
m(G, r, s, k) := \min_f \{M(f, G, r, s, k)\}.
\]

In the case \(G = K_n \), we write \(M(f, n, r, s, k) \) and \(m(n, r, s, k) \) respectively.

The question of determining \(m(n, r, s, k) \) (in its full generality) was first posed by Bollobás [2]. In particular, Bollobás and Gyárfás [4] conjectured that \(m(n, 2, 1, k) = n - 2k + 2 \) for \(n > 4(k - 1) \). They proved this for \(k = 2 \), and they also showed that \(m(n, 2, 1, k) \geq n - 6(2k - 3) \) for \(n \geq 16k - 22 \) and \(k \geq 2 \). Further partial results of the conjecture were subsequently proved by Liu, Morris and Prince. They proved the conjecture for \(k = 3 \) [7], and that \(m(n, 2, 1, k) = n - 2k + 2 \) for \(n \geq 13k - 15 \) [8]. Also in [8], they studied \(m(n, r, 1, k) \) for general \(r \). They conjectured that, given \(r \) and \(k \) with \(r \geq 3 \), there exists \(n_0 = n_0(r, k) \) such that \(m(n, r, 1, k) \) is approximately equal to \(\frac{n^{r + 1}}{r^{k + 1}} \), if \(r - 1 \) is a prime power, for every \(n \geq n_0 \). They proved the case \(r = 3 \) with \(n_0 = 480k \).

The question becomes much more harder to study when one looks for multicoloured \(k \)-connected components, i.e. \(s \geq 2 \). In a subsequent paper [9], Liu, Morris and Prince conducted further research, determining more values and bounds for \(m(n, r, s, k) \) with \(s \geq 2 \).

In the two papers [8, 9], Liu et al. proved (among other facts) the following lower bounds for \(n, r, k \in \mathbb{N} \) and \(r \geq 3 \):

- \(m(n, r, 1, k) \geq \frac{n}{r^2} - 11(k^2 - k)r \),

\[\text{Email addresses: henry.liu@ucl.ac.uk (Henry Liu), person@informatik.hu-berlin.de (Yury Person)}\]

\[1\text{Research supported in part by the European Network “Phenomena in High Dimensions”, FP6 Marie Curie Actions, RTN, Contract MRTN-511953} \]

\[2\text{Research supported by GIF grant no. 1-889-182.6/2005.} \]

\[\text{Preprint submitted to Elsevier June 5, 2009} \]
\[m(n, r, 2, k) \geq \frac{4n}{r+1} - 17k(r + 2k + 1). \]

Moreover, in the first case, when \(r-1 \) is a prime power, they showed an upper bound on \(m(n, r, 1, k) \) is \(\frac{n-k+1}{r+1} + r \), and in the second case, when \(r+1 \) is a power of 2, an upper bound on \(m(n, r, 2, k) \) is \(\frac{4n}{r+1} + 4 \). In the proofs of the above lower bounds, Liu et al. used Mader’s Theorem [10]. But, these lower bounds are good only for \(k = o(\sqrt{n}) \).

We will study asymptotic lower bounds on \(m(n, r, s, k) \) when \(n \) is large. Using ideas from [8, 9] and the many-colours version of Szemerédi’s Regularity Lemma [12], we extend the above results to the sublinear case: when \(k = o(n) \) (and hence, more consistent with the two aforementioned conjectures), showing that “asymptotically”, connectedness should play a lesser role. Namely, that multicoloured components will contain highly connected subgraphs (of connected coloured graphs) of linear order. More precisely, we shall prove the following main results.

Theorem 1. For every \(\gamma \in (0, \frac{1}{4}) \), \(n, r \in \mathbb{N} \) with \(r \geq 3 \), there exist integers \(N_0 = N_0(\gamma, r) \) and \(T_0 = T_0(\gamma, r) \) such that, for all \(n \geq N_0 \),

\[m\left(n, r, 1, \frac{1-4\gamma}{rT_0} n\right) \geq \frac{n}{r-1} - \frac{6\gamma n}{r-1}. \]

In particular, for fixed \(r \), and \(k = o(n) \), \(m(n, r, 1, k) \geq \frac{n}{r-1} - o(n) \), with equality if \(r-1 \) is a prime power.

Theorem 2. For every \(\gamma \in (0, \frac{1}{4}) \), \(n, r \in \mathbb{N} \) with \(r \geq 3 \), there exist integers \(N_0 = N_0(\gamma, r) \) and \(T_0 = T_0(\gamma, r) \) such that, for all \(n \geq N_0 \),

\[m\left(n, r, 2, \frac{1-4\gamma}{rT_0} n\right) \geq \frac{4n}{r+1} - \frac{8\gamma n}{r+1}. \]

In particular, for fixed \(r \), and \(k = o(n) \), \(m(n, r, 2, k) \geq \frac{4n}{r+1} - o(n) \), with equality if \(r+1 \) is a power of 2.

Bollobás and Gyárfás [4] noted that every 2-coloured complete graph on \(n \) vertices contains an \(\left[\frac{n}{16} \right] \)-connected subgraph on at least \(\frac{n}{4} \) vertices. Thus, the above theorems may also be seen as a step in this direction.

With the same techniques, we are also able to partially prove another conjecture of Liu et al.: Conjecture 2 of [8]. For this, it is more convenient if we define the analogous function to \(m(n, r, s, k) \) for bipartite graphs. For \(n, n', r, s, k \in \mathbb{N} \) with \(s \leq r \) and \(k \leq n \leq n' \), and an \(r \)-colouring \(f : E(K_n, n') \to [r] \), define

\[M_{\text{bip}}(f, n, n', r, s, k) := \max\{|V(H)| : H \subseteq K_n, n', |f(E(H))| \leq s \text{ and } H \text{ is } k\text{-connected}\}, \]

\[m_{\text{bip}}(n, n', r, s, k) := \min_{f} \{M_{\text{bip}}(f, n, n', r, s, k)\}. \]

The conjecture then states that, provided \(n, n' \geq rk \), we have \(m_{\text{bip}}(n, n', r, 1, k) \geq \frac{n+n'}{r} \) (and so independent of \(k \)). We shall prove the following partial result.

Theorem 3. For every \(\gamma \in (0, \frac{1}{16}) \), \(n, n', r \in \mathbb{N} \), with \(r \geq 2 \) and \(n' \geq n \), there exist integers \(N_0 = N_0(\gamma, r) \) and \(T_0 = T_0(\gamma, r) \) such that, for all \(n \geq N_0 \),

\[\frac{n+n'}{r} - \frac{3\gamma(n+n')}{r} \leq m_{\text{bip}}(n, n', r, 1, \frac{1-4\gamma}{rT_0} n) \leq \frac{n+n'}{r} + 2. \]

In particular, for fixed \(r \), and \(k = o(n) \), we have \(m_{\text{bip}}(n, n', r, 1, k) = \frac{n+n'}{r} - o(n) \).

This paper will be organised as follows. In Section 2, we shall discuss results related to the regularity lemma which we will require to prove Theorems 1 and 2. We then explain, in Section 3, how we can use these results to prove the two theorems. We repeat this procedure for the bipartite graphs scenario. In Section 4, we shall discuss bipartite regularity lemmas, and then deduce Theorem 3. Finally, we shall discuss open problems in Section 5.
2. Tools: Regularity Lemmas

In this section, we shall discuss the concept of ε-regularity for graphs and the celebrated Szemerédi’s Regularity Lemma [12]. For further details, see the excellent survey of Komlós and Simonovits [6].

For a graph $G = (V, E)$ and two disjoint subsets A, B of V, we write $E(A, B)$ to denote the set of the edges from E that intersect both A and B. We set $e(A, B) := |E(A, B)|$. We write $G[A, B]$ for the bipartite subgraph of G induced by A and B, i.e., $G[A, B]$ has vertex classes A and B, and edge set $E(A, B)$. We often call (A, B) a pair without writing G explicitly when it is clear from the context or if it is not important.

Let $\varepsilon \in (0, 1)$. We define a pair (V_1, V_2) (a bipartite graph with vertex classes V_1 and V_2) to be ε-regular, if for every $U_i \subseteq V_i$ with $|U_i| \geq \varepsilon|V_i|$, $i = 1, 2$, the following inequality holds:

$$|d(V_1, V_2) - d(U_1, U_2)| < \varepsilon,$$

where $d(X, Y) := \frac{e(X, Y)}{|X||Y|}$ is the (edge) density of the pair (X, Y). Note that if (V_1, V_2) is ε-regular, then it is also ε'-regular for any $\varepsilon' \in (\varepsilon, 1)$. The pair (V_1, V_2) is said to be (ε, d)-regular, if it is ε-regular with $d(V_1, V_2) \geq d$.

The following well-known lemmas make ε-regular pairs very useful in applications.

Lemma 4 (Facts 1.3, 1.4 of [6]). Given $0 < 2\varepsilon < \eta < 1$, let (V_1, V_2) be an ε-regular pair with density η. Then,

$$|\{(x, y) : x, y \in V_1, |\Gamma(x) \cap \Gamma(y)| \leq (\eta - \varepsilon)^2|V_2|\}| \leq 2\varepsilon|V_1|^2,$$

$$|\{(x, y) : x, y \in V_1, |\Gamma(x) \cap \Gamma(y)| \geq (\eta + \varepsilon)^2|V_2|\}| \leq 2\varepsilon|V_1|^2.$$

Note that (x, y) is an ordered pair.

Lemma 5 (Slicing Lemma; Fact 1.5 of [6]). Let $\varepsilon, \alpha \in (0, 1)$ with $\varepsilon < \alpha$, and (V_1, V_2) be an ε-regular pair. If $U_i \subseteq V_i$ and $|U_i| \geq \alpha|V_i|$ for $i = 1, 2$, then (U_1, U_2) is ε'-regular, where $\varepsilon' = \max(\frac{\varepsilon}{\alpha}, 2\varepsilon)$.

For a given graph G, the partition $V(G) = V_0 \cup V_1 \cup V_2 \cup \cdots \bigcup V_t$ of its vertex set is said to be ε-regular if the following conditions hold:

- $|V_0| \leq \varepsilon|V(G)|$,
- $|V_i| = |V_j|$, for every $1 \leq i, j \leq t$, and
- all but at most $\varepsilon^2 t$ pairs (V_i, V_j) are ε-regular, $1 \leq i < j \leq t$.

The classes of the partition are called clusters, and V_0 is the exceptional set.

Szemerédi’s Regularity Lemma [12] then says that, given $\varepsilon \in (0, 1)$ and an integer t_0, we can find integers $N_0 = N_0(\varepsilon, t_0)$ and $T_0 = T_0(\varepsilon, t_0)$ such that, for every graph G on at least N_0 vertices, $V(G)$ admits a partition into $t + 1$ classes, for some $t_0 \leq t \leq T_0$, which is ε-regular. Roughly speaking, this says that any graph of sufficiently large order can be approximated by a multipartite graph with a bounded number of equal classes, where the distribution of the edges between most pairs of classes is, in some sense, as in a random graph.

Here, we shall utilise a straightforward generalisation of the original proof of Szemerédi: the many-colours regularity lemma.

Theorem 6 (Many-colours regularity lemma; Theorem 1.18 of [6]). For every $\varepsilon \in (0, 1)$ and $r, t_0 \in \mathbb{N}$, there exist integers $N_0 = N_0(\varepsilon, r, t_0)$ and $T_0 = T_0(\varepsilon, r, t_0)$ such that the following holds. Every graph $G = (V, E)$ with $|V| \geq N_0$, whose edges are r-coloured: $E = E_1 \cup \cdots \cup E_r$, admits a partition of its vertex set: $V = V_0 \cup V_1 \cup \cdots \cup V_t$, for some $t_0 \leq t \leq T_0$, which is ε-regular simultaneously with respect to every subgraph $G_i = (V, E_i)$, $i \in [r]$.

Finally, we will need the notion of a cluster graph of a graph G. Let G be a graph on n vertices, and $V(G) = V_1 \cup \cdots \cup V_t$ be a partition of its vertex set. For $0 < \varepsilon < \eta < 1$ (we think of η as being much larger than ε, but much smaller than 1), define a new graph $R(\eta)$, the cluster graph (or reduced
Step 2. We are left with $p \in E(R(\eta))$ if (V_i, V_j) is (ϵ, η)-regular. One also sometimes writes (V_1, \ldots, V_t) for $V(R(\eta))$.

The “remaining underlying graph” G' is then the subgraph of G, where $V(G') = V(G)$, and $xy \in E(G')$ if $xy \in E(G)$ and $x \in V_i$, $y \in V_j$, where $ij \in E(R(\eta))$. That is, we keep an edge for G' if the pair that it belongs to is (ϵ, η)-regular.

If in the original regularity lemma, we let $t_0 = \left[\frac{1}{\epsilon} \right]$ and $|V(G)|$ be sufficiently large, then G' admits an ϵ-regular partition. If η is as above, we can obtain the graph $R(\eta)$ from G (ignoring the exceptional set) on $t \geq \frac{1}{\epsilon}$ vertices, and the graph G'. Then, in G', we have disrespected at most

$$t \in \left(n \left(\frac{\epsilon n}{t} \right)^2 + t \right) + t \left(\frac{\eta n t}{\eta^2} \right)^2 + t \left(\frac{n/t}{r} \right)^2 < \frac{7}{2} m^2$$

edges from G. Thus, for small η, the graph G' is “almost” our original graph G. We can similarly apply this for the many-colours version of the regularity lemma, and get that for every colour $i \in [p]$, the corresponding graph G'_i is “close” to the graph G_i.

It turns out that, if we can find a component in $R(\eta)$ of order $c \geq 2$, the underlying subgraph G'_c of G contains a subgraph H on roughly at least $c \cdot \frac{n}{2}$ vertices, which roughly becomes $\frac{\eta - \epsilon}{\epsilon}$-connected after deleting at most $c \cdot \frac{n}{2}$ vertices from it.

Lemma 7 (Tree decomposition lemma). Let $\epsilon \in (0, 1)$, and suppose that the graph G has a partition: $V(G) = V_1 \cup \cdots \cup V_t$, where $|V_i| = m$ for every i. For $3 \epsilon < \eta < 1$, let $R(\eta)$ be the cluster graph of this partition. If $R(\eta)$ contains a component of order $c \geq 2$, then G contains an $(\eta - 3\epsilon)m$-connected component on at least $(1 - \epsilon)m$ vertices.

Proof. Let C be a component in $R(\eta)$ of order $c \geq 2$. Fix any spanning tree T of C, and assume without loss of generality that $V(T) = V(C) = \{1, \ldots, c\}$. The underlying subgraph H of G that corresponds to T has $V(H) = V_i \cup V_j$, and $xy \in E(H)$ if $xy \in E(G)$ and $x \in V_i$, $y \in V_j$, where $ij \in E(T)$.

We shall show that, by deleting at most ηm vertices from each V_i, $i \in [c]$, we will get a subgraph H' of H which is $(\eta - 3\epsilon)m$-connected. We proceed as follows. Let L_i be the leaves of T. For $j > 1$, let L_1 be the leaves of $T - \bigcup_{i=1}^{j-1} L_i$ (defined inductively). We have a partition $V(T) = L_1 \cup \cdots \cup L_p$. Note that $|L_i| = 1$ or 2, and if $p = 1$, then $|L_1| = 2$. Now, run the following algorithm.

Step 1. If $p = 1$, then proceed to Step 2. Otherwise, $p > 1$. In this case, take a vertex of L_1, say V_1. It has exactly one neighbour in $T - L_1$, say V_j. Since (V_i, V_j) is (ϵ, η)-regular, by Lemma 4, we may delete all vertices from V_j with at most $(\eta - \epsilon)m$ neighbours in V_j, and obtain $V_i' \subseteq V_i$ with $|V_i'| \geq (1 - \epsilon)m$. Next, disregard the vertex V_i from T, and repeat this procedure on every vertex of L_1. Then, repeat the whole procedure successively on $L_2, L_3, \ldots, L_{p-1}$.

Step 2. We are left with L_p. If $|L_p| = 2$, let $L_p = \{V_k, V_{k'}\}$. By Lemma 4, we may delete all vertices from V_k with at most $(\eta - \epsilon)m$ neighbours in V_k, and all vertices from V_k with at most $(\eta - \epsilon)m$ neighbours in V_k. We obtain $V_k'' \subseteq V_k$ and $V_{k'}'' \subseteq V_{k'}$ with $|V_k''|, |V_{k'}''| \geq (1 - \epsilon)m$. If $|L_p| = 1$, let $L_p = \{V_k\}$. Take an arbitrary, fixed neighbour of V_k in T, say $V_{k''}$, and (similarly) delete the vertices from V_k with at most $(\eta - \epsilon)m$ neighbours in V_k. We obtain $V_k'' \subseteq V_k$ with $|V_k''| \geq (1 - \epsilon)m$.

For every $i \in [c]$, we have now deleted at most ηm vertices from V_i, obtaining $V_i'' \subseteq V_i$. Let H' be the remaining subgraph of H. Then, $|V(H')| \geq (1 - \epsilon)m$. We claim that H' is the required $(\eta - 3\epsilon)m$-connected subgraph. We shall prove a stronger assertion: deleting any $(\eta - 3\epsilon)m$ vertices from every V_i'' does not disconnect H'. So, delese such a set of vertices, let $V_i'' \subseteq V_i$ be the remaining subsets, $i \in [c]$, and let H'' be the remaining subgraph of H. We want to show that H'' is connected.

We first show that the pair (V_i''', V_j''') is connected. It suffices to show that, for every $x \in V_i''$ and $y \in V_j''$, x is connected to y. Observe that the minimum degree of the pair (V_i''', V_j'') is at least $(\eta - 2\epsilon)m$. So, if $X = \Gamma_H(x) \cap V_i'''$ and $Y = \Gamma_H(y) \cap V_j'''$, then $|X|, |Y| \geq \epsilon m$. It now suffices to show that $E(X, Y) \neq \emptyset$. Since (V_i, V_j) is (ϵ, η)-regular, we have $d(X, Y) > d(V_i, V_j) - \epsilon \geq \eta - \epsilon > 0$, which implies $E(X, Y) \neq \emptyset$.

Now, any $V_0 \in V(T) \setminus \{V_i\}$ is connected to V_k by a unique path in T, say, V_0, V_1, \ldots, V_k, where $q_1 = q$ and $q_k = k$. It is easy to see from the algorithm that, for every $1 \leq s < r$, every vertex of $V''_{r,s}$ has at least $(\eta - 2\epsilon)m - (\eta - 3\epsilon)m = \epsilon m$ neighbours in $V''_{r,s}$. Hence, for any $V_0, V_r, V_0 \in V(T)$ (which may be the same) and any $u \in V''_s, v \in V''_t$, u and v are connected to some $u', v' \in V''_s$ by H'', respectively. The lemma follows, since u' and v' are connected by (V_i'''', V_j'''), so that u and v are connected by H''. □
3. Proofs of Theorems 1 and 2

To obtain Theorems 1 and 2, we will generalise the following results.

Theorem 8 (Theorem 11 of [8]). Let \(n, r \in \mathbb{N} \), with \(r \geq 2 \). Then
\[
m(n, r, 1, 1) \geq \frac{n}{r - 1}.
\]

Theorem 9 (Theorem 16 of [9]). Let \(n, r \in \mathbb{N} \), with \(r \geq 3 \). Then
\[
m(n, r, 2, 1) \geq \frac{4n}{r + 1}.
\]

Our main goal will be to “relax” the term \(m(n, r, 1, 1) \) to \(m(G, r, s, 1) \), for \(s = 1, 2 \), and \(r \geq 3 \) in both cases. Here, \(G \) will be an almost complete graph - it should miss at most \(\gamma n^2 \) edges, where \(n \) is the order of \(G \) and \(\gamma > 0 \) is small.

A lemma of [8] that we will need is the following.

Lemma 10 (Lemma 9 of [8]). Let \(m, n \in \mathbb{N} \) and \(c \in [0, 1] \). If \(G \) is a bipartite graph with part-sizes \(m \) and \(n \), and \(e(G) \geq cmn \), then \(G \) has a component of order at least \(cm + n \).

We are now ready to prove the new versions of Theorems 8 and 9.

Theorem 11. Let \(\gamma \in (0, 1) \) and \(n, r \in \mathbb{N} \), \(r \geq 3 \). Let \(G \) be a graph on \(n \) vertices with \(e(G) \geq \binom{n}{2} - \gamma n^2 \). Then \(m(G, r, 1, 1) \geq \frac{n}{r - 1} - \frac{9\gamma n}{2(r-1)} \).

Proof. Fix an \(r \)-colouring of \(E(G) \). We first construct a bipartition \(V(G) = V_1 \cup V_2 \) such that \(|V_1|, |V_2| \geq \frac{n}{r} \) and \(E(V_1, V_2) \) has no edges of colour 1. Consider all the components of \(G \) in colour 1 (including isolated vertices, if any). Let these have vertex sets \(C_1, \ldots, C_p \) with \(|C_1| \geq |C_2| \geq \cdots \geq |C_p| \), and \(p \geq 2 \) (we are clearly done if \(p = 1 \)). If \(|C_1| \geq \frac{2n}{r-1} \), then the theorem holds, so assume that \(|C_1| < \frac{n}{r-1} \). Now, take \(V_1 = \bigcup_{i=1}^{t} C_i \), \(V_2 = \bigcup_{i=1}^{p-t+1} C_i \), where \(t \in \{1, \ldots, p-2\} \) is the unique integer such that \(\sum_{i=1}^{t} |C_i| < \frac{n}{r-1} \) and \(\sum_{i=1}^{p-t+1} |C_i| \geq \frac{n}{r-1} \). One can then easily check that \(|V_1|, |V_2| \geq \frac{n}{r} \).

Now, \(e(V_1, V_2) \geq |V_1||V_2| - \gamma n^2 \), and there exist at least \(\frac{c(V_1, V_2)}{r-1} \) edges in \(E(V_1, V_2) \) of the same colour. But then Lemma 10 asserts the existence of a monochromatic component of order at least
\[
\frac{|V_1||V_2| - \gamma n^2}{(r-1)|V_1||V_2|} \cdot n \geq \left(\frac{1}{r-1} - \frac{9\gamma}{2(r-1)} \right) n.
\]

We remark that Theorem 11 breaks down for \(r = 2 \), as the following example of a 2-colouring on a graph \(G \) on \(n \) vertices, and missing \(\gamma n^2 \) edges, shows. Take three disjoint vertex sets \(V_1, V_2, V_3 \) for \(V(G) \), where \(|V_1| = |V_2| = \sqrt{\gamma} n \) and \(|V_3| = \left(1 - 2\sqrt{\gamma} \right) n \). Colour the edges within \(V_1 \) and between \(V_1 \) and \(V_2 \) blue, those within \(V_2 \) and between \(V_2 \) and \(V_3 \) red, those within \(V_3 \) arbitrarily, while between \(V_1 \) and \(V_2 \) are non-edges of \(G \). Then, it is easy to see that this gives \(m(G, 2, 1, 1) \leq (1 - \sqrt{\gamma}) n \), showing that Theorem 11 does not hold even if we replace the constant \(\frac{2}{3} \) by any other constant.

A generalisation of Theorem 9 we will need is as follows. Its proof is similar to the proof of Theorem 9. It is, however, more technically involved, and uses some additional ideas.

Theorem 12. For every \(\gamma \in (0, 1) \) and \(n, r \in \mathbb{N} \), \(r \geq 3 \), there exists a \(\delta = \delta(\gamma, r) \) with \(0 < \delta < \gamma \) such that, if \(G \) is a graph on \(n \) vertices with \(e(G) \geq \binom{n}{2} - \delta n^2 \), then \(m(G, r, 2, 1) \geq \frac{4n}{r+1} - \frac{4\gamma n}{r+1} \).

Proof. Let \(\gamma \in (0, 1) \) and integer \(r \geq 3 \) be given. We will show how to choose \(0 < \delta = \delta(\gamma, r) < \gamma \) to satisfy the theorem as we proceed through the proof.

Fix an \(r \)-colouring of \(E(G) \) and let \(H \) be a largest connected monochromatic subgraph of \(G \). Assume that \(H \) is of colour 1. We set \(A = V(H) \) and \(|A| = \frac{m(1-\gamma)}{r+1} \). If \(c \geq 4 \) then the theorem holds. So assume now that \(c < 4 \).

Let \(B = V(G) \setminus A \). Then, no edge in \(G[A, B] \) has colour 1. Thus, there exists a colour, say 2, which occurs at least \(\frac{|A||B| - \delta n^2}{r-1} \) times in \(G[A, B] \). Let \(B_2 \subset B \) be the vertices of \(B \) which send an edge of colour 2 to \(A \). If \(|B_2| \geq \frac{(4-c)(1-\gamma)n}{r+1} \), then the set \(A \cup B_2 \) is connected by colours 1 and 2, and \(|A \cup B_2| \geq \frac{2(1-\gamma)n}{r+1} \).
least βn vertices. Because H was chosen to be a largest monochromatic subgraph in G, we obtain

$$\frac{r + 1 - c}{(4 - c)(r - 1)} \cdot \frac{4(1 - \gamma)n}{r + 1} \leq c(1 - \gamma)n$$

and if one solves this inequality for c (see the proof of Theorem 9 in [9]), again a straightforward calculation yields

$$2 \leq c \leq \frac{2(r + 1)}{r - 1}.$$

We will only need $c \geq 2$ for later.

Next, we aim to show that a large number of vertices of B send edges of at least two different colours to A. Suppose that we have βn vertices of B which send edges of exactly one colour to A. Then, at least $\frac{\beta n}{r - 1}$ vertices of B send edges of one particular colour to A. Let B_3 be such a set of vertices, with $|B_3| \geq \frac{\beta n}{r - 1}$. Then, again by Lemma 10, we have a monochromatic component of order at least

$$\frac{|A||B_3| - \delta n^2}{|A||B_3|} (|A| + |B_3|) \geq \left(1 + \frac{\beta(r + 1)}{(r - 1)c(1 - \gamma)} - \frac{\delta(r^2 - 1)}{\beta c(1 - \gamma)} - \frac{\delta(r + 1)^2}{c^2(1 - \gamma)^2}\right) |A|.$$

We will have a contradiction against the maximality of H if

$$\frac{\beta(r + 1)}{(r - 1)c(1 - \gamma)} - \frac{\delta(r^2 - 1)}{\beta c(1 - \gamma)} - \frac{\delta(r + 1)^2}{c^2(1 - \gamma)^2} > 0,$$

and solving this as a quadratic in β, we get $\beta > \frac{\delta(r^2 - 1)}{2c(1 - \gamma)} + \frac{r - 1}{2} \sqrt{\frac{\delta^2(r + 1)^2}{c^2(1 - \gamma)^2} + 4\delta}$. So, we have

$$\beta \leq \frac{\delta(r^2 - 1)}{2c(1 - \gamma)} + \frac{r - 1}{2} \sqrt{\frac{\delta^2(r + 1)^2}{c^2(1 - \gamma)^2} + 4\delta}.$$

Also, there are at most

$$\frac{\delta n^2}{|A|} = \frac{\delta(r + 1)n}{c(1 - \gamma)}$$

so we are done. Thus, we may assume that $|B_2| < \frac{(4 - c)(1 - \gamma)n}{r + 1}$, and we can choose a set B_2' such that $B_2 \subseteq B_2' \subset B$ and $|B_2'| = \frac{(4 - c)(1 - \gamma)n}{r + 1}$.

Now consider the bipartite subgraph H_2 of $G[A, B_2']$ whose edges are of colour 2. We would like to choose δ so that

$$e(H_2) \geq \frac{r + 1 - c}{(4 - c)(r - 1)} |A||B_2'|,$$

A straightforward but tedious calculation yields

$$e(H_2) \geq \frac{|A||B| - \delta n^2}{r - 1} = \left(\frac{r + 1 - c(1 - \gamma)}{1 - \gamma} - \frac{(r + 1)^2\delta}{c(1 - \gamma)^2}\right) \frac{1}{(4 - c)(r - 1)} |A||B_2'|.$$

Hence, we would like

$$\frac{r + 1 - c(1 - \gamma)}{1 - \gamma} - \frac{(r + 1)^2\delta}{c(1 - \gamma)^2} \geq r + 1 - c$$

to hold. This is equivalent to

$$\delta \leq \frac{c(1 - \gamma)}{r + 1}.$$

Provided that $\delta \leq \frac{1}{r}$, Theorem 11 gives $\frac{cn(1 - \gamma)}{r + 1} \geq \frac{n}{r - 1} - \frac{9\delta n}{2(r - 1)} \geq \frac{n}{2(r - 1)}$. Hence, if $\delta \leq \frac{\gamma}{2r - 2}$ as well, then (2) holds, and so, (1) also holds.

Now, applying Lemma 10 on H_2, we have a connected monochromatic subgraph on at least

$$\frac{r + 1 - c}{(4 - c)(r - 1)} (|A| + |B_2'|) = \frac{r + 1 - c}{(4 - c)(r - 1)} \cdot \frac{4(1 - \gamma)n}{r + 1}$$

vertices. Because H was chosen to be a largest monochromatic subgraph in G, we obtain

$$\frac{r + 1 - c}{(4 - c)(r - 1)} \cdot \frac{4(1 - \gamma)n}{r + 1} \leq c(1 - \gamma)n$$

and if one solves this inequality for c (see the proof of Theorem 9 in [9]), again a straightforward calculation yields

$$2 \leq c \leq \frac{2(r + 1)}{r - 1}.$$
vertices in B which have no neighbours in A. So, from (3) and (4), the number of vertices in B sending edges of at least two different colours to A is at least
\[
|B| - \frac{\delta n^2}{|A|} - \beta n \geq \left(1 - \frac{c(1 - \gamma)}{r + 1} - \frac{\delta(r + 1)}{c(1 - \gamma)} - \frac{\delta(r^2 - 1)}{2c(1 - \gamma)} - \frac{r - 1}{2} \sqrt{\frac{\delta^2(r + 1)^2}{c^2(1 - \gamma)^2} + 4\delta}\right)n. \tag{5}
\]

We would like the quantity on the right of (5) to be at least \(\frac{(r + 1 - c)(1 - \gamma)n}{r + 1}\). This is true if and only if (after some calculation)
\[
\gamma \geq \frac{\delta(r + 1)^2}{2c(1 - \gamma)} + \frac{r - 1}{2} \sqrt{\frac{\delta^2(r + 1)^2}{c^2(1 - \gamma)^2} + 4\delta}.
\]

This holds if both
\[
\frac{\delta(r + 1)^2}{2c(1 - \gamma)} \leq \frac{\gamma}{3} \quad \text{and} \quad \frac{r - 1}{2} \sqrt{\frac{\delta^2(r + 1)^2}{c^2(1 - \gamma)^2} + 4\delta} \leq \frac{\gamma}{3}
\]
are satisfied. So sufficiently (recalling that $c \geq 2$), we can let
\[
\delta \leq \frac{4\gamma(1 - \gamma)}{3(r + 1)^2} \quad \text{and} \quad \delta \leq \frac{16\gamma^2(1 - \gamma)^2}{9(r - 1)^2((r + 1)^2 + 16(1 - \gamma)^2)}. \tag{6}
\]

It follows that, taking δ which satisfies (6) (as well as $\delta \leq \frac{\gamma}{3}$ and $\delta \leq \frac{\gamma^2}{r^2 - 3\gamma - \gamma^2}$) and using the pigeonhole principle, B contains at least
\[
\frac{2}{r - 1} \cdot \frac{(r + 1 - c)(1 - \gamma)n}{r + 1}
\]
vertices, each sending an edge of some colour, say j, to A. Let $D \subset B$ be these vertices. Now, recalling that $c \geq 2$ and $r \geq 3$, we have a connected subgraph using colours 1 and j on at least
\[
|A \cup D| \geq \frac{c(1 - \gamma)n}{r + 1} + \frac{2(r + 1 - c)(1 - \gamma)n}{(r - 1)(r + 1)} \geq \frac{4(1 - \gamma)n}{r + 1}
\]
vertices.

So altogether, the theorem holds if we initially chose $\delta = \delta(\gamma, r)$ such that
\[
0 < \delta \leq \min\left\{\frac{1}{9}, \frac{\gamma}{2r - 2}, \frac{4\gamma(1 - \gamma)}{3(r + 1)^2}, \frac{16\gamma^2(1 - \gamma)^2}{9(r - 1)^2((r + 1)^2 + 16(1 - \gamma)^2)}\right\}.
\]

Now, Theorems 11 and 12, together with Theorem 6 and Lemma 7, imply immediately Theorems 1 and 2.

Proof of Theorem 1. Given $\gamma \in (0, \frac{1}{2})$ and integer $r \geq 3$, let $\epsilon = \frac{r}{2}$ and $t_0 = \lceil \frac{\epsilon}{r} \rceil$. Obtain $N_0 = N_0(\epsilon, r, t_0) = N_0(\gamma, r)$ and $T_0 = T_0(\epsilon, r, t_0) = T_0(\gamma, r)$ from Theorem 6. Now, given K_n with $n \geq N_0$, and an r-colouring $f : E(K_n) \to [r]$, let G_i be the graph on $V(K_n)$ with the edges of colour i, for $i \in [r]$. Then, there exists a partition $V(K_n) = V_0 \cup V_1 \cup \cdots \cup V_t$, for some $\frac{1}{2} \leq t \leq T_0$, which is simultaneously ϵ-regular with respect to every G_i. We have $|V_0| \leq \epsilon n$, and $|V_i| = |V_j|$ for all $i, j \geq 1$. Now, for each G_i, we obtain the cluster graph $R_i(\frac{1}{t})$ of the graph $G_i - V_0$, so that $|V(R_i(\frac{1}{t}))| = t$. Let the graph $R(\frac{1}{t}) = \bigcup_{i=1}^{t} R_i(\frac{1}{t})$, and let $g : E(R(\frac{1}{t})) \to [r]$ be an r-colouring satisfying $g(uv) \in \{i \in [r] : uv \in E(R_i(\frac{1}{t}))\}$, for every $uv \in E(R(\frac{1}{t}))$. Now, note that $\epsilon(\frac{1}{t}) \geq (\frac{1}{2}) - \gamma t^2$, since there are at least $(\frac{1}{t}) - r \in t^2 = (\frac{1}{2}) - \gamma t^2$ pairs (V_p, V_q) which are ϵ-regular in every G_i, and for such a pair (V_p, V_q), we have $d(V_p, V_q) \geq \frac{1}{t}$ in some G_i. So, Theorem 11 implies that we can find a monochromatic connected subgraph of $R(\frac{1}{t})$ (in the colouring g), say of colour ℓ, on at least $\frac{r + 1}{2} \cdot \frac{9\gamma}{\epsilon^2(r - 1)}$ vertices. This is a connected subgraph of $R(\frac{1}{t})$, so Lemma 7 implies that G_ℓ has a \([\frac{t - \frac{9\gamma}{\epsilon^2}}{t}]\)-connected subgraph of order at least
\[
\left(1 - \frac{\gamma}{r}\right) \left(\frac{t}{r - 1} - \frac{9\gamma t}{2(r - 1)}\right) \left(\frac{n - |V_0|}{t}\right) \geq \frac{n}{r - 1} - \frac{6\gamma n}{r - 1}.
\]

The first part follows, since \(\frac{1}{r} - \frac{\frac{9\gamma}{\epsilon^2}}{t} \geq \frac{1}{r^2} \xi n\).

To see the second part, simply let $\gamma \to 0$ and $n \to \infty$. Then, $\frac{1 - \frac{9\gamma}{\epsilon^2}}{t} n = o(n)$ and $\frac{6\gamma n}{r - 1} = o(n)$. The “equality” part comes from the fact (Lemma 8 of [8]) that $m(n, r, 1, k) \leq \frac{n - k + 1}{r - 1} + r$ if $r - 1$ is a prime power.
Proof of Theorem 2. This is essentially the same as the previous proof. We will use Theorem 12 instead of Theorem 11. Given \(\gamma \in (0, \frac{1}{4}) \) and integer \(r \geq 3 \), we first obtain \(\delta = \delta(\gamma, r) \) as given by Theorem 12, and then set \(\varepsilon = \frac{\delta}{4} \) and \(t_0 = \lceil \frac{1}{\varepsilon} \rceil \). Now, apply Theorems 6, 12, and Lemma 7 as before. We obtain the corresponding \(N_0 \) and \(T_0 \), and then taking an \(r \)-colouring of \(E(K_n) \), where \(n \geq N_0 \), we obtain the corresponding \(t \). This time, we get a 2-coloured, \((\frac{1-\varepsilon}{r}\cdot n) \)-connected subgraph of \(K_n \) on at least

\[
(1 - \frac{\delta}{r}) \left(\frac{4t}{r+1} - \frac{4\delta t}{r+1} \right) \left(\frac{n - \varepsilon n}{t} \right) \geq \frac{4n}{r+1} - \frac{8\delta n}{r+1} \geq \frac{4n}{r+1} - \frac{8\gamma n}{r+1}
\]

vertices. We are done, since this subgraph is also \((\frac{1-\varepsilon}{r}\cdot n) \)-connected.

The second part is now trivial, again by letting \(\gamma \to 0 \) and \(n \to \infty \). The “equality” part comes from the fact (Lemma 13 of [9]) that \(m(n, r, 2, k) \leq \frac{4n}{r+1} + 4 \) if \(r+1 \) is a power of 2. \(\square \)

4. Bipartite Regularity Lemmas and Proof of Theorem 3

Having now proved Theorems 1 and 2 with the help of Szemerédi’s Regularity Lemma, we would like to apply a similar idea to prove Theorem 3.

We begin by discussing regularity lemma results concerning bipartite graphs. Firstly, we will need the following version of the regularity lemma for bipartite graphs for many colours.

Theorem 13. For every \(\varepsilon \in (0, 1) \) and \(r, t_0 \in \mathbb{N} \), there exist integers \(N_0 = N_0(\varepsilon, r, t_0) \) and \(T_0 = T_0(\varepsilon, r, t_0) \) such that the following holds. Every bipartite graph \(G = (U \cup V, E) \) with \(|U| = n, |V| = n' \), and \(n' \geq n \geq N_0 \), whose edges are \(r \)-coloured: \(E = E_1 \cup \cdots \cup E_r \), admits a partition of its vertex set: \(U = U_0 \cup U_1 \cup \cdots \cup U_t \) and \(V = V_0 \cup V_1 \cup \cdots \cup V_t \), for some \(t_0 \leq t \leq T_0 \), so that

- \(|U_0| \leq \varepsilon n \) and \(|V_0| \leq \varepsilon' n' \),
- \(|U_i| = |U_j| \) and \(|V_i| = |V_j| \), for every \(1 \leq i, j, i', j' \leq t \), and
- in every subgraph \(G_k = (U \cup V, E_k) \), \(k \in [r] \), all but at most \(\varepsilon t^2 \) pairs of \(\{(U_i, V_j)\}_{i,j \geq 1} \) are \(\varepsilon \)-regular.

The proof of Theorem 13 is a straightforward generalisation (see for example [6] for details) of the proof of the regularity lemma for bipartite graphs. For the proof of the latter see [12], see also [11] for a weaker form and [13] for a more recent proof as well.

Unfortunately, if we attempt to use Theorem 13 directly to tackle Theorem 3, we will run into a major difficulty. Given a large bipartite graph \(G \) with part-sizes \(n \) and \(n' \), where \(n' \geq n \), it turns out that, when we partition \(V(G) \), we would like all the cluster sizes to be roughly the same. If we use the partition given by Theorem 13, this is certainly far from being true if \(n' \gg n \). So, our next aim is to suitably refine the partition of \(V(G) \) as given by Theorem 13 while, in some sense, “preserving” a large proportion of \(\varepsilon \)-regular pairs.

We shall roughly divide our consideration into the cases \(n' \sim n \) and \(n' \gg n \). More precisely, given \(\varepsilon > 0 \), we consider the cases \(n' \leq 33\varepsilon^{-5}n \) and \(n' > 33\varepsilon^{-5}n \).

Lemma 14 (Many-colours regularity lemma for bipartite graphs). For every \(\varepsilon \in (0, \frac{1}{33}) \) and \(r, t_0 \in \mathbb{N} \), there exist integers \(N_0 = N_0(\varepsilon, r, t_0) \) and \(T_0 = T_0(\varepsilon, r, t_0) \), such that the following holds. Let \(G = (U \cup V, E) \) be a bipartite graph, with \(|U| = n, |V| = n' \), and \(n' \geq n \geq N_0 \). Then, whenever the edges of \(G \) are \(r \)-coloured: \(E = E_1 \cup \cdots \cup E_r \), \(G \) admits a partition of its vertex set: \(U = U_0 \cup U_1 \cup \cdots \cup U_t \) and \(V = V_0 \cup V_1 \cup \cdots \cup V_t \), for some \(t_0 \leq t \leq T_0 \), so that

- \(|U_0| \leq \varepsilon n \) and \(|V_0| \leq \varepsilon' n' \),
- \(|U_i| = |V_j| \) for all \(1 \leq i \leq t, 1 \leq j \leq t' \), and
- either, in every \(G_k = (U \cup V, E_k) \), \(k \in [r] \), all but at most \(\varepsilon t'^2 \) pairs of \(\{(U_i, V_j)\}_{i,j \geq 1} \) are \(\varepsilon \)-regular, if \(n' \leq 33\varepsilon^{-5}n \),
- or, all but at most \(\varepsilon t'^2 \) pairs of \(\{(U_i, V_j)\}_{i,j \geq 1} \) are \((\varepsilon, \frac{1}{4}, \frac{1}{4}) \)-regular, each one with respect to some colour, if \(n' > 33\varepsilon^{-5}n, r < 4\varepsilon^{-5} \), and \(G = K_{n,n'} \).
The case \(n' > 33\varepsilon^{-5}n \) will be the trickier case. We shall derive a key lemma to help us to prove this case. To do this, we first recall a lemma of Alon et al. \([1]\), which has a sufficient condition for a bipartite graph to be \(\varepsilon \)-regular.

For a pair \((V_1, V_2)\) with \(|V_1| = |V_2| = n\), density \(d \), and \(Y \subseteq V_1 \), define the deviation of \(Y \) by

\[
\sigma(Y) = \frac{1}{|Y|^2} \sum_{y_1, y_2 \in Y} \sigma(y_1, y_2),
\]

where for distinct \(y_1, y_2 \in V_1 \)

\[
\sigma(y_1, y_2) = |\Gamma(y_1) \cap \Gamma(y_2)| - d^2 n
\]
is the neighbourhood deviation of \(y_1 \) and \(y_2 \).

Here then, is the lemma of Alon et al.

Lemma 15 (Regularity criterion; Lemma 3.2 of \([1]\)). *Let \(G \) be a bipartite graph with classes \(V_1 \) and \(V_2 \), where \(|V_1| = |V_2| = n\), and density \(d \). Let \(2n^{-1/4} < \varepsilon < \frac{1}{16} \). Assume that*

\[
\left| \{ x \in V_1 : \text{deg}(x) - dn \geq \varepsilon^4 n \} \right| \leq \frac{1}{8} \varepsilon^4 n,
\]

and that for every \(Y \subseteq V_1 \) with \(|Y| \geq \varepsilon n\), we have \(\sigma(Y) < \frac{1}{2} \varepsilon^4 n \). Then, \(G \) is \(\varepsilon \)-regular.

Now, here is the lemma that we will require.

Lemma 16. *Let \(\varepsilon \in (0, \frac{1}{16}) \), \(k \in \mathbb{N} \) and \((X_1, X), \ldots, (X_k, X)\) be \((\frac{\varepsilon}{16} \varepsilon^5)\)-regular pairs, with \(d_i := d(X_i, X) \in (\frac{\varepsilon}{16} \varepsilon^5, 1) \) for every \(i \), and moreover, \(|X_i| = m \) for every \(i \), \(|X| = m' \), \(m' \geq m > 16\varepsilon^{-4} \), and \(\ell m = m' \) for some \(\ell \in \mathbb{N} \). Then, there exists a partition \(X = U_1 \cup \cdots \cup U_{\ell} \), where \(|U_j| = m \) for every \(j \), such that at least*

\[
\left[1 - 2m^3 \exp \left(-\frac{3}{16^3} \varepsilon^{20} m \right) \right] k\ell
\]
of the pairs \((X_i, U_j)\) are \(\varepsilon \)-regular, and \(d(X_i, U_j) \in (d_i - \frac{1}{4} \varepsilon^5, d_i + \frac{1}{4} \varepsilon^5) \).

Proof. We shall prove that, by taking a random partition of \(X \) into parts of size \(m \), the conclusion holds with probability at least \(1 - \frac{1}{m} > 0 \). To do this, we shall apply Lemma 15. We show that for every \(i \), most vertices from \(X_i \) and most pairs of vertices from \(X_i \) have roughly the expected degrees and co-degrees in a randomly chosen subset of \(X \) of size \(m \).

Fix \(X_i \), and let \(\{v_1, \ldots, v_m\} \) be its vertex set. For every \(1 \leq r \leq m \), let \(Z_r \) be the random variable that counts the neighbours of the vertex \(v_r \in X_i \) in a subset \(U \subset X \) of size \(m \), chosen uniformly at random. \(Z_r \) has a hypergeometric distribution \(Hg(m, m', \text{deg}(v_r)) \). Let \(\bar{\varepsilon} = \frac{\varepsilon}{16} \varepsilon^5 \). By Lemma 4, all but at most \(2\bar{\varepsilon}m \) vertices of \(X_i \) have degrees in \(X \) lying in the interval \((d_i m' - \bar{\varepsilon}m', d_i m' + \bar{\varepsilon}m')\). Let \(X_i' \) be these vertices, and \(v_r \in X_i' \). By Chernoff’s inequality (see, for example, Theorem 2.10 in \([5]\)), we have

\[
P(Z_r \leq d_i m - 2\bar{\varepsilon} m) \leq P\left(Z_r \leq \text{deg}(v_r) - \bar{\varepsilon}m' \right) \leq P\left(Z_r \leq (1 - \bar{\varepsilon}) \frac{\text{deg}(v_r)m}{m'} \right) \leq \exp \left(-\frac{\bar{\varepsilon}^2 \text{deg}(v_r)m}{3m'} \right) \leq \exp \left(-\frac{1}{3} \bar{\varepsilon}^2 (d_i - \bar{\varepsilon})m \right),
\]

and similarly, \(P(Z_r \geq d_i m + 2\bar{\varepsilon} m) \leq \exp \left(-\frac{1}{3} \bar{\varepsilon}^2 (d_i - \bar{\varepsilon})m \right) \). Applying this to every such vertex in \(\bigcup_{i=1}^{k} X_i' \), we have

\[
P\left(|\Gamma(v) \cap U| \in (d_i m - 2\bar{\varepsilon} m, d_i m + 2\bar{\varepsilon} m) \right) \text{ whenever } v \in \bigcup_{i=1}^{k} X_i', v \in X_i'
\]

\[
\geq 1 - \sum_{i=1}^{k} 2m \exp \left(-\frac{1}{3} \bar{\varepsilon}^2 (d_i - \bar{\varepsilon})m \right) \geq 1 - 2km \exp \left(-\frac{1}{16^3} \varepsilon^{15} m \right).
\]

Next, for fixed \(X_i \) and for every ordered pair \((v_s, v_t)\) of vertices from \(X_i \), let the random variable \(Z_{st} \) be the number of common neighbours of \(v_s \) and \(v_t \) in a randomly chosen subset \(U \) of \(X \) of size \(m \). We have \(Z_{st} \sim Hg(m, m', |\Gamma(v_s) \cap \Gamma(v_t)|) \). Let \(X_i'' \subseteq X_i \times X_i \) be those ordered pairs with common degree
in X lying in $((d_i - \varepsilon)^2 m', (d_i + \varepsilon)^2 m')$. By Lemma 4, X_i'' consists of all but at most $4\varepsilon m^2$ pairs from X_i. Again, by Chernoff’s inequality, for $(v_s, v_t) \in X_i''$,

$$\mathbb{P}(Z_{st} \geq (d_i + \varepsilon)^2 m + \varepsilon m) \leq \exp\left(-\frac{1}{3} \varepsilon^2 (d_i - \varepsilon)^2 m\right),$$

by a similar calculation. Applying this to all such ordered pairs in $\bigcup_{i=1}^{k} X_i''$, we have

$$\mathbb{P}\left(\Gamma(v_s) \cap \Gamma(v_t) \cap U \leq (d_i + \varepsilon)^2 m + \varepsilon m\right) \leq \exp\left(-\frac{1}{3} \varepsilon^2 (d_i - \varepsilon)^2 m\right) \geq 1 - km^2 \exp\left(-\frac{3}{16} \varepsilon^{20} m\right).$$

So now, choose a set $U \subseteq X$ with $|U| = m$, uniformly at random. For each $1 \leq i \leq k$, let $G_i = (X_i, U)$ and $d'_i = d(X_i, U)$. With probability at least $1 - 2km^2 \exp\left(-\frac{3}{16} \varepsilon^{20} m\right)$, we have, for every i,

$$d'_i \geq \frac{(d_i - 2\varepsilon m)(m - 2\varepsilon m)}{m^2} \geq d_i - 4\varepsilon = d_i - \frac{1}{4} \varepsilon^5,$$

and,

$$d'_i \leq \frac{(d_i + 2\varepsilon m)(m - 2\varepsilon m) + 2\varepsilon m \cdot m}{m^2} \leq d_i + 4\varepsilon = d_i + \frac{1}{4} \varepsilon^5.$$

With these, it is now easy to show that for every i,

$$\left|\{x \in X_i : |\deg_{G_i}(x) - d'_i m| \geq \varepsilon^4 m\}\right| \leq \left|\{x \in X_i : |\deg_{G_i}(x) - d_i m| \geq \varepsilon m\}\right| \leq 2\varepsilon m \leq \frac{1}{8} \varepsilon^4 m.$$

Next, fix i, and let $Y \subseteq X_i$ with $|Y| \geq \varepsilon m$. Let Y_1 be those ordered pairs of Y which are in X_i'', and Y_2 be those which are not. So, $|Y_2| \leq 4\varepsilon m^2$. We have

$$\sigma(Y) = \frac{1}{|Y|^2} \left(\sum_{(y_1, y_2) \in Y_1} \sigma(y_1, y_2) + \sum_{(y_1, y_2) \in Y_2} \sigma(y_1, y_2) \right) \leq \frac{1}{|Y|^2} \left(\sum_{(y_1, y_2) \in Y_1} \left| \left((d_i + \varepsilon)^2 m + \varepsilon m - (d_i - 4\varepsilon)^2 m\right)(|Y^2| - |Y_2|) + (m - (d_i - 4\varepsilon)^2 m)|Y_2| \right) \right) \leq \frac{1}{16} \varepsilon^3 m + \frac{1}{4} \varepsilon^3 m < \frac{1}{2} \varepsilon^3 m.$$

Since $2m^{-1/4} < \varepsilon < \frac{1}{16}$. Lemma 15 implies that (X_i, U) is ε-regular. This is then true for every i, with probability at least $1 - 2km^2 \exp\left(-\frac{3}{16} \varepsilon^{20} m\right)$.

Finally, for a random partition $X = U_1 \cup \cdots \cup U_r$, where $|U_j| = m$ for every j, let the random variable N be the number of pairs (X_i, U_j) which are not both ε-regular and with $d(X_i, U_j) \in (d_i - \frac{1}{2} \varepsilon^5, d_i + \frac{1}{2} \varepsilon^5)$. Then, $\mathbb{E}(N) \leq k \ell \cdot 2m^2 \exp\left(-\frac{3}{16} \varepsilon^{20} m\right)$. Thus, by Markov’s inequality, we have

$$\mathbb{P}\left(N \geq k \ell \cdot 2m^2 \exp\left(-\frac{3}{16} \varepsilon^{20} m\right)\right) \leq \frac{1}{m},$$

which implies the lemma.

We are now ready to prove Lemma 14.

Proof of Lemma 14. Let such ε, r and t_0 be given. Let $G = (U \cup V, E)$ be a bipartite graph with $|U| = n$, $|V| = n'$ and $n' \geq n$, and whose edges are r-coloured: $E = E_1 \cup \cdots \cup E_r$. We consider two cases.

Case 1 ($n' \leq 33\varepsilon^{-5} n$). Let N_0' and T_0' be the integers obtained from Theorem 13, using $\varepsilon' = \varepsilon^8$. Choose $N_0 = N_0'$ and $T_0 \geq T_0' \varepsilon^{-7}$. If $n \geq N_0$, then Theorem 13 applies for G. So, we have a partition $U = U_0 \cup U_1' \cup \cdots \cup U_r'$ and $V = V_0' \cup V_1' \cup \cdots \cup V_r'$, for some $t_0 \leq s \leq T_0'$, so that

- $|U_0'| \leq \varepsilon^8 n$ and $|V_0'| \leq \varepsilon^8 n'$.
• $|U'_i| = m$ and $|V'_j| = m'$ for all $1 \leq i, j \leq s$ and some m, m', and
• in every $G_k = (U \cup V, E_k), k \in [r]$, all but at most ε^8s^2 pairs of (U'_i, V'_j) with $i, j \geq 1$ are ε-regular.

For each U'_i, divide it into subsets of size $[\varepsilon^7m']$, leaving a remaining set of size less than $[\varepsilon^7m']$. Unite these remaining sets with U'_0 and let U_0 be the union. Then, $|U_0| \leq \varepsilon^8n + \varepsilon^7m' \leq \varepsilon^8n + \frac{3\varepsilon^4}{1-\varepsilon}n \leq \varepsilon n$ if $\varepsilon < \frac{1}{3\varepsilon}$. Repeat this with each V'_j, again dividing into sets of size $[\varepsilon^7m']$, and let V_0 be the analogous union of V'_0 with the remaining sets. Then, $|V_0| \leq \varepsilon^8n' + \varepsilon^7m' \leq \varepsilon n'$.

Now, let $U_1, \ldots, U_t \subset U$ and $V_1, \ldots, V_t \subset V$ be the subsets of size $[\varepsilon^7m']$ in the above partition. If $U_p \subset U'_0$ and $V_q \subset V'_0$, and (U'_i, V'_j) is ε'-regular in every colour, then applying Lemma 5 with $\alpha = \varepsilon^7$ gives that (U_p, V_q) is ε-regular in every colour. So, there are at least

$$(1 - \varepsilon^8)s^2 \frac{m}{[\varepsilon^7m']} \cdot \frac{m'}{[\varepsilon^7m']} = (1 - \varepsilon^8)t't' \geq (1 - \varepsilon)t't'$$

such pairs (U_p, V_q). Finally, $t' = \frac{m'}{[\varepsilon^7m']}, s \leq T_0$, so $t_0 \leq s \leq t \leq t' \leq T_0$. This proves Case 1.

Case 2 ($n' > 33\varepsilon^{-5}n$, $r < 4\varepsilon^{-5}$ and $G = K_{n,n}$). Let N_0 and T_0 be the integers obtained from Theorem 13, using $\varepsilon' = \frac{1}{3\varepsilon}$. Choose $N_0 > \max\left(\frac{2\varepsilon^{-5}t}{1 - \varepsilon}, \frac{t'}{1 - \varepsilon}, N'_0\right)$ and $T_0 = T'_0$, where $\theta = \theta(\varepsilon)$ is the largest solution to $20^3\exp\left(-\frac{1}{16}\varepsilon^2\theta\right) = \frac{2}{3}\varepsilon$. If $n \geq N_0$, then Theorem 13 applies for $K_{n,n'}$. So, we have a partition $U = U_0 \cup U_1 \cup \ldots \cup U_t$ and $V = V_0 \cup V_1 \cup \ldots \cup V_t$, where $t_0 \leq t \leq T_0$, such that

• $|U_0| \leq \frac{1}{3\varepsilon}v_0$ and $|W'_0| \leq \frac{1}{3\varepsilon}v'_0$,
• $|U_i| = m$ and $|W'_i| = m'$, for every $1 \leq i, j \leq t$ and some m, m', and
• in every $G_k = (U \cup V, E_k), k \in [r]$, all but at most $\frac{1}{3\varepsilon}v_0^2$ pairs of (U_i, W_j) with $i, j \geq 1$ are $(\frac{1}{16}\varepsilon)$-regular.

We have $|U_0| \leq \varepsilon n$. Now, let $m'' = \ell m + \ell'$, where $\ell, \ell' \in \mathbb{Z}$ and $0 \leq \ell' < m$. For each W'_i, remove a set of size ℓ' and unite these sets with W'_0, forming a new set V_0. Then, $|V_0| \leq \frac{1}{3\varepsilon}v_0 + \frac{1}{3\varepsilon}(n' - |W'_0|) \leq \varepsilon n'$. Also, one can show that $\ell > 33\varepsilon^{-5} - 2$, so that $\ell' < \frac{\varepsilon n'}{\ell} < \frac{\varepsilon}{16}v_0$. Let W_j be the remaining set from W'_j. Now, $|W_j| = 1 - \frac{\varepsilon}{m'} > 1 - \frac{1}{3\varepsilon}v_0$. If (U_j, W_j) is $(\frac{1}{3\varepsilon}v_0)$-regular in every colour, then applying Lemma 5 with $\alpha = 1 - \frac{1}{3\varepsilon}v_0$ gives that (U_j, W_j) is $(\frac{1}{16}\varepsilon)$-regular in every colour.

Now, consider the subgraph $H \subseteq K_{n,n'}$ as follows. $V(H) = V(K_{n,n'}) \setminus (U_0 \cup V_0)$. If (U_i, W_j) is $(\frac{1}{3\varepsilon}v_0)$-regular in every colour, choose a colour whose density is at least $\frac{1}{16}$, and keep only those edges for H. Finally, disregard the colours. Now, in H, for fixed W_j, let the pairs $(U'_1, W_j), \ldots, (U'_i, W_j)$ be precisely the $(\frac{1}{16}\varepsilon)$-regular pairs, where $U'_{i_1}, \ldots, U'_{i_k} \in \{U_i, \ldots, U_t\}$, and with densities at least $\frac{1}{16}$, so that $d(U'_{i_1}, W_j), \ldots, d(U'_{i_k}, W_j) \in (\frac{1}{16}\varepsilon, 1)$. By the choices of N_0 and T_0, Lemma 16 applies to the pairs $(U'_i, W_j), \ldots, (U'_i, W_j)$. So, there is a partition $W_j = V'_1 \cup \cdots \cup V'_t$ into sets of size m, such that at least $1 - 2m^3 \exp\left(-\frac{3}{16}\varepsilon^2m\right)k_j \ell$ of the pairs (U'_i, V'_j) are ε-regular, with densities greater than $\frac{1}{7} - \frac{1}{4}\varepsilon^5$.

Now, taking the union over W_j and noting that $m > \theta$, at least

$$\sum_{j=1}^{t} \left(1 - 2m^3 \exp\left(-\frac{3}{16}\varepsilon^2m\right)\right)k_j \ell \geq \left(1 - \frac{1}{2}\varepsilon\right)\left(1 - \frac{1}{33}\varepsilon^5\right)^2 \ell \geq (1 - \varepsilon)t't'$$

pairs (U_p, V_q) are ε-regular, with densities greater than $\frac{1}{7} - \frac{1}{4}\varepsilon^5$, where $\{V_1, \ldots, V_t\}$ are all the V'_q. Case 2 follows after we reinstate the colours of the edges from H.

This completes the proof of Lemma 14. □

Having obtained the bipartite regularity lemma that we will require: Lemma 14, we can now proceed to prove Theorem 3. Firstly, we have the following analogous statement to Theorems 11 and 12 for bipartite graphs, which is an easy corollary of Lemma 10.

Lemma 17. Let $\gamma \in (0, 1)$, and $m, n, r \in \mathbb{N}$. Let G be a bipartite graph with part-sizes m and n, and $\varepsilon(G) \geq mn - \gamma mn$.

Then, if we have an r-colouring of $E(G)$, there is a monochromatic connected subgraph on at least $\frac{m+n}{r} - \frac{\gamma(m+n)}{r}$ vertices.
To prove Theorem 3, we use a similar idea as in the end of Section 3. Here, we shall use Lemmas 14, 17 and 7.

Proof of Theorem 3. We first prove the lower bound. Let \(\gamma \in (0, \frac{1}{32}) \) and \(n, n', r \in \mathbb{N} \), where \(r \geq 2 \) and \(n' \geq n \). Let \(\varepsilon = \frac{\gamma}{r} \) and \(t_0 = \lfloor \frac{1}{2} \rfloor \). Obtain \(N_0 \) and \(T_0 \) from Lemma 14. Now, given \(K_{n,n'} = (U \cup V, E) \) with \(|U| = n \geq N_0 \) and \(|V| = n' \), and an \(r \)-colouring of it, we have a partition \(U = U_0 \cup U_1 \cup \cdots \cup U_t \) and \(V = V_0 \cup V_1 \cup \cdots \cup V_t \) such that \(|U_0| \leq \varepsilon n \), \(|V_0| \leq \varepsilon n' \), \(|U_i| = |V_j| = m \) for all \(i, j \geq 1 \) and some \(m \), and \(\frac{1}{r} < t \leq T_0 \). Consider two cases, defining our cluster graphs slightly differently in each case.

Case 1 (\(n' \leq 33 \varepsilon^{-5} n \)). In this case, at least \((1-\varepsilon)tt' \) pairs of \((U_i, V_j)\) \(i,j \geq 1 \) are \(\varepsilon \)-regular in every colour. By considering cluster graphs with \(\eta = \frac{1}{r} \) of the coloured subgraphs on \(K_{n,n'} = (U \cup V_0, V_0) \), it follows that, by Lemmas 17 and 7, we have a \((1-\varepsilon)\frac{n}{r^2} \)-connected, monochromatic subgraph on at least

\[
(1 - \frac{\gamma}{r})(t + t') - \frac{\gamma}{r}(t + t') \left(\frac{n + n' - \varepsilon n - \varepsilon n'}{t + t'} \right) \geq \frac{n + n'}{r} - \frac{3\gamma(n + n')}{r}
\]

vertices, since \(m = \frac{\varepsilon n}{r^2} = \frac{n'}{r^2} |V_0| \), so that \(m = \frac{n + n' - |V_0| - |V_0|}{t + t'} \geq \frac{n + n' - \varepsilon n - \varepsilon n'}{t + t'} \).

Case 2 (\(n' > 33 \varepsilon^{-5} n \)). In this case, at least \((1-\varepsilon)tt' \) pairs of \((U_i, V_j)\) \(i,j \geq 1 \) are \((\varepsilon, \frac{1}{r} - \frac{1}{2} \varepsilon^2)\)-regular, each one in some colour. For each \(i \in [r] \), let \(G_i \) be the subgraph of \(G_{n,n'} \), with the edges of colour \(i \). Let \(R_i = \frac{1}{2} - \frac{1}{2} \varepsilon^2 \) be the cluster graph derived from \(G_i - (U_0 \cup V_0) \), and \(R_i = \frac{1}{2} - \frac{1}{2} \varepsilon^2 \) be the cluster graph derived from \(G_i - (U_0 \cup V_0) \), and \(R_i = \frac{1}{2} - \frac{1}{2} \varepsilon^2 \). Then, \((R_i - \frac{1}{2} - \frac{1}{2} \varepsilon^2) \geq (1-\varepsilon)tt' \geq (1-\varepsilon)tt' \). As before, Lemmas 17 and 7 imply that some \(G_i \) has a \((\frac{1}{2} - \frac{1}{2} \varepsilon^2 - 3\varepsilon)\)\(m \)-connected subgraph on at least \(\frac{n+n'}{r} \) vertices, by the same calculation as in Case 1. Case 2 follows, since \(\frac{1}{r} - \frac{1}{2} \varepsilon^2 - 3\varepsilon \)\(m \geq \frac{1}{r} - \frac{1}{2} \varepsilon^2 - 3\varepsilon \) if \(r \geq 2 \).

Now, we show the upper bound. For \(k \in \mathbb{N} \), we shall describe an \(r \)-colouring of \(E(K_{n,n'}) \), where \(n' \geq n \geq rk \), such that the largest monochromatic \(k \)-connected subgraph has order at most \(\frac{n+n'}{r} + 2 \). So, take such a \(K_{n,n'} = (U \cup V, E) \), where \(|U| = n \) and \(|V| = n' \). Partition each of \(U \) and \(V \) into \(r \) parts: \(U = U_1 \cup \cdots \cup U_r \), and \(V = V_1 \cup \cdots \cup V_r \), each as equally as possible. Note that \(|U_i|, |V_j| \geq k \) for every \(i,j \). Now, colour the edges of \(E(U_i, V_j) \) with colour \(i-j \) (mod \(r \)). Then, the largest monochromatic \(k \)-connected subgraph has order \(\frac{n+n'}{r} + 2 \).

The final part is now trivial, again by letting \(\gamma \to 0 \) and \(n \to \infty \), and using a similar argument as before.

\[\square\]

5. Open problems

Having now improved the lower bounds for \(m(n, r, 1, k) \) and \(m(n, r, 2, k) \) for large \(n \), an obvious question to ask would be what happens for \(s \geq 3 \). Our main problem is that we do not have analogous results to Theorems 11 and 12 for \(s \geq 3 \). Note that (for some special values of \(r \)) Theorem 11 says that \(m(G, r, 1, 1) \) is “close” to \(m(n, r, 1, 1) \) if \(G \) is “close” to \(K_n \), and Theorem 12 says a similar thing for \(s = 2 \). So, we pose the following conjecture, which asks for an analogous statement for \(s \geq 3 \), as well as for those values of \(r \) where we do not know the value of \(m(n, r, s, 1) \), for \(s = 1, 2 \).

Conjecture 18. Let \(\gamma \in (0, 1) \), and \(n, r, s \in \mathbb{N} \) with \(r \geq s, r \geq s \geq 1 \). Then there exists \(\delta = \delta(\gamma, r, s) \) with \(0 < \delta < \gamma \) such that the following holds. If \(G \) is a graph on \(n \) vertices with \(e(G) \geq \frac{n(n-1)}{2} - \delta n^2 \), then \(m(G, r, s, 1) \geq (1-\gamma)m(n, r, s, 1) \).

If some form of Conjecture 18 holds, then we can conceivably apply the same techniques, and get \(m(n, r, s, k) \geq m(n, r, s, 1) - o(n) \) for \(r, s \) fixed, \(r \geq 3 \) and \(s \geq 1 \), and \(k = o(n) \). Thus, we may only have to worry about \(1 \)-connectedness if we were to tackle Bollbás’ question in this direction.

Another problem is that we have not said much about \(m_{bip}(n, n', r, s, k) \) for \(s \geq 2 \). It is easy to adapt the proof of Theorem 3 and get \(m_{bip}(n, n', r, s, k) \geq \frac{s(n+n')}{s+n'} - o(n) \). But this could be weak except for \(s = 2 \), where we may slightly adjust the upper bound construction in the proof of Theorem 3, and get that \(m_{bip}(n, n', r, 2, k) \leq \frac{(2n+n')}{2} + 4 \) if \(r \) is a power of \(2 \) (this is similar to the construction given in Lemma 13 of [9]). So, we finish by stating the problem itself.

Problem 19. Determine \(m_{bip}(n, n', r, s, k) \) for \(s \geq 2 \).
6. Acknowledgements

The authors would like to thank Mathias Schacht for his useful discussions on the proof of Lemma 16. The first author would also like to thank Humboldt-Universität zu Berlin for their generous hospitality. He was able to carry out part of this research with the second author during his visit there.

References