THE BALANCED DECOMPOSITION NUMBER AND VERTEX CONNECTIVITY

SHINYA FUJITAT AND HENRY LIU#

Abstract. The balanced decomposition number f(G) of a graph G was introduced by Fujita and Nakamigawa
[Discr. Appl. Math., 156 (2008), pp. 3339-3344]. A balanced colouring of a graph G is a colouring of some of the ver-
tices of G with two colours, such that there is the same number of vertices in each colour. Then, f(G) is the minimum
integer s with the following property: For any balanced colouring of G, there is a partition V(G) = V1 U --- UV, such
that, for every 4, V; induces a connected subgraph, |V;| < s, and V; contains the same number of coloured vertices in
each colour. Fujita and Nakamigawa studied the function f(G) for many basic families of graphs, and demonstrated
some applications.

In this paper, we shall continue the study of the function f(G). We give a characterisation for non-complete
graphs G of order n which are | % |-connected, in view of the balanced decomposition number. We shall prove that a
necessary and sufficient condition for such | % |-connected graphs G is f(G) = 3. We shall also determine f(G) when
G is a complete multipartite graph, and when G is a generalised ©-graph (i.e., a graph which is a subdivision of a
multiple edge). Some applications will also be discussed. Further results about the balanced decomposition number
also appear in two subsequent papers of Fujita and Liu.
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1. INTRODUCTION

In this paper, we only consider finite undirected graphs. For such a graph G, its vertex set and edge set are
denoted by V(G) and E(G) respectively.

Our definitions concerning graphs throughout the paper are fairly standard. For a graph G and U C
V(G), the subgraph of G induced by U is denoted by G[U]. The graph G —U is the subgraph of G induced by
V(G)\U. We write G —u for G —{u}. The open neighbourhood of U is N(U) = {v € V(G—-U) : vu € E(G)
for some u € U}. The set U is a cut-set of G if G — U is a disconnected graph. For k € N, G is a k-
connected graph if |[V(G)| > k + 1, and G has no cut-set of size at most k — 1. Every non-empty graph is
0-connected. The maximum k for which G is k-connected is the connectivity of G, and is denoted by k(G).
For U,W C V(G) and U NW = (), we write E(U, W) for the edges of G which intersect with both U and
W. We write E(u, W) for E({u},W). A U — W path of G is a sub-path where one end-vertex is in U, the
other is in W, and no other vertex (if any) is in U U W. Finally, for u,v € V(G), the distance from u to v
in G is denoted by dg(u,v).

We refer the reader to [1] or [4] for any undefined terms.

In [9], Fujita and Nakamigawa introduced the balanced decomposition number of a graph. For a graph
G with |V(G)| = n € N, a balanced colouring of G is a pair (R, B), where R,B C V(G), RN B = 0, and
0 <|R| =|B| < [%]. We shall refer the vertices of R (B) as the red (blue) vertices, those of V(G) \ (RU B)
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the uncoloured vertices, and those of R U B the coloured vertices. A set U C V(G) is a balanced set if
|[UNR| = |UnB|, and G[U] is connected. A balanced decomposition of G, or of (R, B), is a partition
V(G) =V1U -+ UV, (for some r > 1), such that each V; is a balanced set. We may also write the balanced
decomposition as P = {Vi,...,V,.}. The size of P is then defined as the maximum of |V1],...,|V,|.

Now, observe that, if G is a disconnected graph, then we can take a balanced colouring so that G does
not have a balanced decomposition at all, simply by colouring one vertex in one component red, and another
vertex in another component blue. So, from now on, we shall only consider balanced decompositions for
connected graphs.

Let G be a connected graph on n vertices, and k € Z, 0 < k < | §]. We define

f(k,G) = min{s € N: every balanced colouring (R, B) of G with |R| = |B| =k

has a balanced decomposition of size at most s}.

Note that f(k,G) < n, so f(k,G) is well-defined. The balanced decomposition number of G is then
defined as

£(G) = max{f(k,G) 0<k< gJ }
Fujita and Nakamigawa [9] studied the function f(G) in many directions. Among these were the following.

e A graph G with f(G) = 2 if and only if G is a complete graph with at least two vertices.

o f[(Kmn)= L%J + 3, if K, is the complete bipartite graph with 2 < m <n.

e The result that f(C,) = [5] + 1, if C, is the cycle graph on n vertices, and the conjecture that
f(G) < 5] +1,if G is a 2-connected graph on n vertices.

In this paper, we shall prove further results in the direction of each of the above.

e In Section 2, we characterise connected graphs G with balanced decomposition number 3.

e In Section 3, we determine the balanced decomposition number of complete multipartite graphs,
which extends the complete bipartite graph result.

e In Section 4, we prove an asymptotically tight bound for f(G) when G is a generalised ©-graph,
which is a graph obtained by subdividing a multiple edge.

As we will observe from our results, the balanced decomposition number seems to have a deep relationship
with vertex connectivity of graphs. In Section 2, we show that a graph G of order n is | § |-connected if and
only if f(G) = 2 or 3. This result will point us to a new direction for the study of vertex connectivity in
graphs. The problem of finding non-trivial characterisations for a graph to be k-connected has been well
studied, with the cases k = 2 (Whitney [17]) and k = 3 (Tutte [16]) the most well known (see also, e.g.,
Sections 3.1 and 3.2 of [4]). On the other hand, if a graph G does not have high connectivity, say, G is
2-connected, then f(G) is likely to be large (see the above conjecture for 2-connected graphs). In view of
this, we believe that the balanced decomposition number can be a new criterion to measure the connectivity
of a graph. In Section 5, we propose a problem about the relationship between the balanced decomposition
number and connectivity. Also, some applications are discussed. We shall see that, we can decide whether a
graph satisfies f(G) € {2,3} or not with an algorithm in polynomial time. We shall also have a discussion
about the relation of the balanced decomposition number with “non-separating subgraphs”.

In two subsequent papers [7, 8], more results about the balanced decomposition number are proved.
These include further applications [7], as well as partial results of the above conjecture, in the cases when
the graph is a subdivided K4, and when it is a 2-connected series-parallel graph [3].

2. GraPHS G WITH f(G) =3

We first recall a trivial remark from [9].

Proposition 1 (Remark 2 of [9]). Let G be a connected graph with at least 2 vertices. Then f(G) = 2 if
and only if G is a complete graph.
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So it is natural to ask: “Which connected graphs G have f(G) = 37”. With f(G) small, we would expect
such graphs G to have many edges. So, these graphs may conceivably be highly connected as well.

Before we proceed, we need Theorem 2 below, which is a well known consequence of Menger’s theorem
(see, for example, [1], Ch. III, Corollary 6, which implies Theorem 2).

Theorem 2. Let k € N, and let G be a k-connected graph with |V (G)| > 2k. Then, for any U, W C V(QG)
with UNW =0 and |U| = |W| = k, there exist k vertex disjoint U — W paths.

Now, here is the characterisation result.

Theorem 3. Let G be a connected graph with n > 3 vertices and G # K,,. Then f(G) =3 if and only if G

is | § |-connected.

Proof. Suppose that f(G) = 3, and assume for contradiction that G is not |%]-connected. Then, let
C C V(G) be a cut-set with |C| = ¢ < [ %] -1, and let V(G—C) = PUQ, where |[P| =p >0, |Q| = ¢ > 0, and
E(P,Q) = 0. Assume without loss of generality that p > ¢. Then, p > [%(n—cﬂ > f%(Zc—l—Q—c)] =[§]+1

e If ¢ > | 5] + 1, then we take the balanced colouring (R, B) with [PNR| = [§] +1, [CNR| = [§],
QN B|=|5]+1,and [CNB|=[§],s0that |[R| = |B|=c+1<[5].

e Ifg<[§], thenp=n—-q—c>2c+2—-q—c=c—q+2. We take the balanced colouring (R, B)
where [PNR =c—q¢q+2, |CNR =q—1,|QNB| =¢q,and [CNB| =c—q+ 1. So again,
|R|=|B|=c+1<[%]. Notethat c—q+2,c—q+1>¢q¢+1>0.

In either case, it is easy to check that f(G) > 4. Indeed, for any such balanced colouring, if we can
find a balanced decomposition P of size at most 3, then we cannot have two coloured vertices of the same
colour in any member of P. So, the vertices of P N R are in distinct members of P, say, A1,..., Apng|-
Also, for every i, A; cannot contain a vertex of @ N B. Otherwise, since E(P, Q) = (), we would have A; also
containing a vertex of C, which is always coloured. So, A; must contain a vertex of C'N B. Now, distinct A;
and A; must contain distinct vertices of C' N B, and this is impossible since |P N R| = |C N B| + 1. Hence,
G is | §]-connected.

Conversely, suppose that G is | § |-connected. Since G # K,,, by Proposition 1, we have f(G) > 3. We
shall show, by downward induction on k, that f(k,G) < 3 for every k < [ |, which will suffice.

Firstly, for k = | 5|, suppose that we have a balanced colouring (R, B) with |R| = |B| = [§]. Since G
is | § J-connected, applying Theorem 2 with k¥ =[5 ], U = R and W = B gives f(|5],G) < 3.

Now, suppose that the implication holds for £+ 1 < k < |%], but not for k¥ = £. That is, £ is the
maximal integer such that f(¢+1,G) < 3 and f(¢,G) > 3. Let (R, B) be a balanced colouring of G with
|R| = |B| =¢, and let U = V(G) \ (RU B) be the uncoloured vertices of (R, B). Let (R/, B') be a balanced
colouring of G, where R’ = RU{y'}, B’ = BU {2'}, and ¢/, 2’ € U. In other words, to get the sets R’ and
B’, we take vertices 3/, 2’ € U, “colour y’ red” and append it to R, and, “colour z’ blue” and append it to
B. By the induction hypothesis, there exists a balanced decomposition P for (R, B') of size at most 3. We
may assume without loss of generality that the structure of P is as follows. A set of size 2 induces an edge
of G with one end-vertex in R’, the other in B’; call these sets P5. We may assume that |P5| is maximal, so
that a set of size 3 induces a path of length 2 in G with one end-vertex in R’, the other in B’ (so there is no
edge of G joining these end-vertices); call these sets Pj;. A set of size 1 is a vertex of U \ {2/, y'}.

If 4/ and 2’ are in the same balanced set of P, then P will also be a balanced decomposition of size
at most 3 for (R, B). So, we may assume that 2’ € A, and y' € Ay, where A,, A, € P are distinct, and
A NR={z}, AyN B = {y}, for some z € R and y € B.

Define P; = P\ {A,, Ap} for i =2,3, and Uy = U \ |U{A : A € P3}. We have the following observation.

Observation 1. V(G — {x,y}) is a disjoint union of members of Pa, P3 and U;. O
For aset C € Ps, let {¢,} =CNR, {c}=CNB, and {¢,} =CNU.
Now, we construct a subgraph H C G containing « and y. Moreover, we shall derive a partition

V(H) = X' UY'UZ which we will need later in the proof. The subgraph H will contain many trees in a
specific form which we shall describe first.
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Suppose that we have subsets Q> C Pa, Q3 C P53 and U’ C U;. Suppose that we also have a red vertex
we€ R\ U{A: A€ QU Q3}. Weshall “grow” a tree by successively attaching elements of Qs, Q3 and U’
to what we already have. This will be based on two operations. Start with w. If at some stage we have the
tree T, then we can form a new tree 7" D T by doing one of the following.

o If w e V(T)N R, then join v € U'\ V(T) to u if vu € E(G). That is, T’ = T Uvu.
e fueV(T)N(RUU), A€ Q2UQs, AZ V(T), and {v} = AN B, then unite G[A] with T by joining
vu, if vu € E(G). That is, T' = T U G[A] Uvu.

We shall call a tree that can be constructed by successively performing these two operations in some
order a red tree, and such a red vertex w is the seed of the red tree. Denote this red tree by R,. Sim-
ilarly, switching the roles of red and blue, we call a tree B, that can be constructed from a blue vertex
w' € B\|U{A: A€ QyUQ3} as aresult a blue tree. Examples of these trees are shown in Figure 1. Groups
of vertices in the boxes are elements of Py and P3. The uncoloured vertices not inside the boxes are elements
of Uy. The vertices w and w’ are the seeds. In subsequent diagrams, red, blue and uncoloured vertices will
be depicted as in Figure 1.

® Red vertex
® Blue vertex
O Uncoloured vertex

Figure 1. A red tree and a blue tree.

So with this, using Qs = Po, Q3 = P3 and U’ = Uj, we can construct a red tree R, with seed x, and a
blue tree B, with seed y. Choose R, and B,, such that V(R,)NV(B,) = 0, and |V (R,)UV(B,)| is maximal.
Let Gy = R, U By, (so, Gy is a disconnected graph with V/(Go) = V(R;) UV (By)).

Now, suppose that we have constructed a subgraph G with Gy ¢ G C G satisfying the following
properties.

(i) There are families of red trees and blue trees, R and B, and some C’ C P3 such that the following
hold.

R, € R, By € B, and the members of R U B are vertex disjoint.
For every T € RUB and C" € ', we have C' € {C € P3: C C V(T)}.
For all C € C’, we have V(R,)NC =V (B,)NC = 0.
T e (RUB)\{R,, By} and w is the seed of T', we have V(T —w) N C = ( for every C € C’,
and there is a unique C’ € C’ such that V(T) N C’ = {w}.

e V(G)=U{V(T): TeRUBYUY{C:C e}

Hence, V(G — {z,y}) is a union of members of Py, P3 and U;. Note that, if we have C € C’ and
¢r (¢p) has no red (blue) tree with order at least 2 constructed onto it, then ¢, (¢p) may or may not
be a red (blue) tree itself, and we must declare such a status for ¢, (cp).
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(ii) (Adjacency conditions). If C' € C’, then in G, one of the following holds.

(a) ¢, sends at least one edge of G to a red vertex in some red tree in R \ {R.,}. Moreover, no
edge of G joins ¢, to any blue vertex of any blue tree in B, and c¢; is not the seed of a blue tree.

(b) ¢y sends at least one edge of G to a blue vertex in some blue tree in B\ {B,, }. Moreover, no
edge of G joins ¢, to any red vertex of any red tree in R, and ¢, is not the seed of a red tree.

(c) ¢, sends at least one edge of G to a red vertex in some red tree in R \ {R,.}, and to a blue
vertex in some blue tree in B\ {Be,}, and ¢, and ¢, are both seed vertices, of a red tree in R
and a blue tree in B, respectively.

We partition €’ = C, UC, UC as follows.

C, = {C € :c, satisfies (a) above},
Cy, = {C e :c, satisfies (b) abovel,
C = {C e :ec, satisfies (c) above}.

In addition, the following hold.
(d) In G, every C' € C, UC has the following property. For some t > 1, there is a sequence of
distinet sets C, ..., C*t € C.UC such that for every i, we have a red tree R.; € R, and ¢!, sends
an edge of G to V(Rci-%—l) N R, where by convention, R +1 = R,.
(e) A similar statement to (d) holds when we switch the roles of red and blue, z and y, R and B,
and C, and Cp.
(iif) (Maximality condition). Every red tree and blue tree of G cannot be “extended” in the following
sense: There is no element of {C' € P, UP3UU; : C ¢ V(G)} that can be appended to any red tree
or blue tree, in accordance to the rules of the construction of the red trees and blue trees.

Note that G = Gy satisfies (i) and (ii) vacuously, and also (iii). Figure 2 shows a possible structure of

G. Bach large box represents a red tree or a blue tree, with the seed vertex at the top of each tree. For the
boxed 3-sets, we have C1,Cy € C,., C3,C7 € Cp, and Cy,C5,Cg € C.

S

21

O @ 3 —
Cq Cy Cs
| ® ﬁ 2

Cy

Figure 2. The structure of G.
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Now, we want to extend G to some subgraph G with G ¢ G C G. We shall do this with the following
algorithm.

Step 1.

Step 2.

Let G D Gy satisfy properties (i) to (iii), with R, B,C,,Cp and C defined as before. Now, suppose
that we have C € P3, C' ¢ V(é) with ¢, sending an edge of G to a red vertex in some red tree in
R, or to a blue vertex in some blue tree in B, or both.

e For the first case, append the edges {c,w € E(G): w € V(T)NR for some T € R} to G. Using
the members of Py U P3 U U; “available” to us; that is, the family {A € PoUPsUU; : A ¢
V(G)UCY, construct a red tree R, , while ¢, is left alone and is not considered as a blue tree.
Choose R.., so that |V (R, )| is maximal. Set R® = RU{R,,}, B" =B, C% =C,U{C},C) =C,
and C° = C.

e Similarly, for the second case, append the edges {c,w € E(G) : w € V(T) N B for some T € B}
to G. Using the members of {A € P,UPsUU; : A ¢ V(G)UCY, construct a blue tree B,,, while
¢, is left alone and is not considered as a red tree. Choose B, so that |V (B.,)| is maximal. Set
RO =R, B =BU{B,}, C?=C,, C)=C,U{C} and C° = C.

e For the last case, append the edges {c,w € E(G) : w € V(T)N R for some T € R} and
{caw € E(G) : w € V(T) N B for some T € B} to G, and note that there is at least one edge
of each type. We then construct a red tree R., and a blue tree B.,, again using members of
{AeP,UPsUU; : A ¢ V(G)UCY, so that V(R )NV (B,,) = 0 and |V (R.,) U V(B,,)| is
maximal. Set R® = RU{R,, }, B> =BU{B,}, C?=C,, C) =C,and C° = CU {C}.

~In all three cases, let GY be the new graph obtained. If we cannot perform Step 1, then we set
G=G.

Now, suppose that, for some t > 0, we have found the families R?, B, C}, C~f,, Ct, with CZ? U(f{; UcCi =
C~TLJ(,'~'bLJC~LJ~{C'}7 and the graphs G¢, for 0 < i < ¢, but not for i = t+1, withGo c G c G° C --- C G*.
Suppose that Gt “partially satisfies” properties (i) to (iil) as follows. Instead of properties (ii)(a-c),
assume that the following is satisfied instead.

(ii') In G, one of the following holds.

(a/) If C" € Ct, then ¢, sends at least one edge of G to some red vertex of some red tree in
R*\{R. }, and ¢ is not the seed of a blue tree in BY.

(b') If C' € Cf, then ¢, sends at least one edge of G' to some blue vertex of some blue tree in
B'\ {B,}, and ¢, is not the seed of a red tree in R'.

(¢) If C" € C', then ¢, sends at least one edge of G to a red vertex in some red tree in
R'\{R. }, and to a blue vertex in some blue tree in B*\ {B,; }, and ¢, and ¢, are both
seed vertices, of a red tree in R? and a blue tree in B, respectively.

As for properties (i) and (iii), they are all satisfied with G*, R, Bt, Ct, C! and C* in place of G,
R, B, C,, Cy and C. Let (i) and (iii’) be the modified properties. Note that of course G satisfies
the properties (i') to (iii).

Now, suppose that we have E(V(Rq. )N R, d.,) # 0 for some D € CtUC?, some red tree Ry € R,
and some D’ € C! (If not, then set # = t and go to Step 3). Add all edges of E(V(Rq4,) N R,d.,)
to G*. Now, set Ct:+1 = Ct, ™' = C!\ {D'} and C**' = C* U {D'}. Next, construct a new red
tree Ry with elements from {A € P,UPsUU; : A ¢ V(G")}, and with |V (Rq )| maximal. Set
R =R U{Ry } and B = B'. Let G'*! O G* be the new graph obtained. Note that indeed,
we have CO = - .. = Cl*1. Tt is easy to check that G**! also satisfies the properties (i) to (iii’).

Repeat this procedure successively, starting with GY. Note that the construction of new red trees
enhances this possibility. For some ¢’ > 0, we must have E(V(S)NR, d,) = 0 for all red trees S € RY
(including S = R;) and D € CNEI. This is because in each step, we are moving a set from some C}ﬁ to
some C!. These sets are not moved again, so this procedure cannot last forever.
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Step 3. Next, we do a similar thing as Step 2, switching the roles of red and blue. We now have a graph
G". Suppose that for some ¢ > ¢ > 0, we have found R?, B, (f’;, C~g7 Ct and G' for 0 < i < t, but
not for i =t +1, with Go c G C G° C --- ¢ G C --- C G*. Moreover, suppose that Gt satisfies
the properties (i’) to (iii’). Now, suppose that E(V(Bg,) N B,d.,) # 0 for some blue tree By, € B,
De (f’,f UCt, and D' € C~ﬁ Carry out Step 2 in an analogous manner, switching the roles of red and
blue, and C! and C{. We obtain R**!, Bi+1, CtH+1 it Ct*+1 and GTH! D GY, again satisfying the
properties (i’) to (iii’). Note that at this stage, it is not possible to apply Step 2, since we do not
construct any new red trees in Step 3, and indeed, we have CNZt,, =...= C~’£+1. So, starting with C?t/,
repeat Step 3 successively until it stops. For some t” > # > 0, we obtain R*", B, C",Ct",C*" and
G'" such that, E(V(S) N R,d,) = 0 for all red trees S € R and D € C!"; E(V(T)N B, d,) = 0 for
all blue trees T € B and D’ € C!". So now, the graph G!" satisfies the properties (i) to (iii) that
the graph G at the beginning satisfied. Now, we set G=a".

Roughly speaking, in Step 1 we attempt to “extend” a graph G that we already have to a new graph
GO, by addlng a permissible element of P3 and constructing new red and blue trees. In Steps 2 and 3, we
“tidy up” the new graph GO by moving vertices and constructing more red and blue trees, so that we end
up with G having a similar structure to the prev10u5 graph G.

Now, starting with G, with C,r=C=C= = @, run the above algorithm successively, replacing G by G
each time we move from Step 3 back to Step 1. This process must terminate at some stage, because we are
using more and more elements of P3 every time we apply Step 1. When we cannot apply Step 1, let H be the
final state of the graph G, and let C,,Cp and C be the final states of C,,Cy and C. We have now constructed
a graph H with Go C H C G. Moreover, H satisfies properties (i) to (iii) (with H in place of G).

Now, let X’ (Y’) be the union of the vertex sets of the red (blue) trees in H with |J{C : C € C,}
(U{C : C € Cp}), and Z = J{{cu} : C € C}. Note that we have V(H) = X'UY'UZ. Let W =U \ V(H),
and W= (RUB)\V(H). T [(X'UW)NU| <|Y'NU|,set X = X'UW and Y = Y/ UW'. Otherwise, set
X=X'UWUW’and Y =Y’. Note that V(G) = XUY UZ.

Our aim now will be to delete a cut-set of G of size at most [ 5] — 1, which will be a final contradiction.
This cut-set will be (X N(BUU))U(Y NR)UZif | XNU|<|YNU|,and (X NB)UY N(RUU))UZ if
|X NU| > |Y NU|. We must therefore prove certain non-adjacencies in G.

In order to tackle this, we shall digress and describe a special type of tree which will be crucial to our
discussion. For this, we shall forget about G for the moment, as well as R, B and U.

Let F5 be a family of edges and F3 be a family of paths of length 2, where each member has one
end-vertex coloured red, the other coloured blue, and in the case of a member of F3, the middle vertex
uncoloured. Let F} be a set of uncoloured vertices. Also, the members of F5, F3 and F; are mutually vertex
disjoint, and we may think of each of F3, F5 and F; having infinitely many members. Let w (w’) be another
red (blue) vertex. Let R, B and U denote the red, blue and uncoloured vertices.

We say that a tree T with at least two vertices is alternating if T' can be constructed as follows.

e Start with the vertex w € R. We will now successively append members of Fy U F3 U F}.

e Suppose that at some stage, we have constructed a tree S, and A € Fo U F3 U Fy U {w} is the last
subgraph appended to S. Then, we can obtain a new tree S’ D S by doing either one of the following.

— If we have u € V(A) N R, we may join v € F} \ V(S) to u. That is, $' = S Uvu.
— If we have u € V(A) N (RUU), C € FoUF3, C ¢ S, and {v} = V(C)N B, we may unite C
with S by joining vu. That is, S’ = S U C Uvu.
We do this successively, and stop at any point we wish. Let 7. be the final tree obtained, and C,.
be the final subgraph appended, where C, € F, U F3 U Fy U {w}.

e Now, repeat the above two steps, starting with the vertex w’ € B, switching the roles of red
and blue, and that any subgraph that we append is not involved in the construction of 7;.. We
obtain a similar tree Ty, vertex disjoint from T,.. Let C} be the final subgraph appended, where
Cy € Fo UF3U Fy U{w'}. Furthermore, assume that we do not have both C, € F; and Cp € F}.
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e If we have z € V(C,)N(RUU) and 2’ € V(Cy) N B, or z € V(C,) N R and 2’ € V(Cy) N U (note
that such z and 2’ always exist), then we unite T} and T}, by joining zz’. Let T be the tree obtained.
That is, T =T, UT, U 272’.

Also, we call T, a red alternating tree, and the red vertex w is the seed of T,. Similarly, T}, is a blue
alternating tree, with seed w’. See Figure 3. The subgraphs of order 2 and 3 in boxes are elements of F>
and F3. The uncoloured vertices not in the boxes are elements of Fj.

Ty

Figure 3. An alternating tree.

We have the following claim.

Claim 2. (R, B) is a balanced colouring for T, and (R, B) has a balanced decomposition of size at most 3.

Proof. Let Fo, F3, F1,w,w,T,, Ty, C, and Cj be defined as before. Obviously, |]:2| = |B|, since |V(T).) ﬁé\ =
|V(T,) N B| + 1 and |V (Ty) N B| = |V(T},) N R| + 1. We define a linear ordering <, on V(T}) as follows. We
have a <, a if either dr, (w,a) < dr, (w,d’), or dr, (w,a) = dr,(w,a’) and a € R, a’ € B. Note that the only
way to have dr, (w,a) = dr, (w,a’) is when we join the uncoloured vertex in some C € F3 to a blue vertex
in some D € Fy U F3, whence {a} = V(C)N R and {a’} = V(D) N B.

Now, let s = |V(T,,)NR|—1 = |[V(T.)N B| > 0. Suppose that, starting with w, as we move along V (T}.),

with respect to <., the coloured vertices that we come across are, in order, ci,...,cos+1. We have ¢; = w.
It is easy to see, for example, by induction on the number of elements of F, UF3 U Fy U{w} used in T,., that
€1,C3,y.-.,Cas+1 € R and ca,cq,...,c25 € B. If s > 1, then let K C V(T;.) be the vertices coming after cas.

We obtain a balanced decomposition for T, — K as follows. For 1 <i < s, let

[024 L ch] _ V(C2i—1 : "021')7 if dr, (w,Czi—l) < dTT(w,CQi),
B {ua 02141,021'}7 if dr, (w, c2i—1) = dr,.(w, ¢2:),

where cg;_1 - - ¢g; is the sub-path of T, with end-vertices cg;_1 and cg; (which has order at most 3), and u
is the uncoloured vertex preceding co;—1. Note that we have uco;—1,uco; € E(T).). So, we have the following
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balanced decomposition with size at most 3 for T;. — K.
S S
V(TT — K) = U[C2i—1702i] U U {{u’} : Ul S V(Tr — K) \ U[CQi—1702i]}~
i=1 i=1

Of course, if s = 0, then we just ignore this balanced decomposition.

We can carry out a similar procedure on T3, switching the roles of red and blue. Defining a similar linear
ordering <, on V(T}), we have a similar set of coloured vertices dy, . . ., das+1, for some ¢t > 0, which alternate
in colour (starting with blue), and a similar set L C V(T}) containing the vertices coming after dy; € R,
with respect to <. Again, we can find a balanced decomposition of T — L with size at most 3.

Finally, it is easy to check, by a simple case by case analysis, that T[K U L] has a balanced decomposition
of size at most 3, using the fact that the edge 22’ exists (In fact, there are four possible cases for the structure
of K (L), each one containing one red (blue) vertex and at most two uncoloured vertices). We shall not go
into details here. O

Now we return to the graph G. Before we prove the claim regarding non-adjacencies in G, we first
consider “extracting” a red (blue) alternating tree from a red (blue) tree in H C @G, and introduce a
notation. Suppose that R, is a red tree in H with seed u, and v € V(R,). Let v € C; € {u} UP, UP3UU;
for some C; C Ry. If C; # {u}, then, when C; was constructed in R,, it was appended by being joined
to some Cy € {u} UPy UP3UU;, Co C R,. Repeat this procedure with Cs, and successively. We obtain
distinct sets Cy,...,Cy € {u} UP, UPsUU; in R, for some ¢t > 1, with v € C; and C; = {u}. This is
indeed the case. To see this, consider the linear ordering < on the sets of {u} U Py UP3UU; used in R, in
the order that they appeared in the construction of R,, and observe that Cy < --- < Cy. Now, define

(Ry,v) = Ry[ChLU---UCY.

Similarly, if B, is a blue tree in H with seed v’, and v' € V(B,/), we define (B,s,v’) analogously. With
this definition, we have the following observation.

Observation 3. (R,,v) ({(By,v')) is a red (blue) alternating tree with seed v (u'). Moreover, V(R,) \ (Ry,v)

(V(Bw) \ (Bw,v")) is a disjoint union of members of P, P3 and Us. O
Now, we are ready to prove the following non-adjacencies claim.
Claim 4.

(@) If (X'UW)NU| <|Y'NU|, so that X = X"UW and Y =Y UW’, then
E(XNRYN(BUU))=0.
(b) IfFIX'uW)NU| > Y'NU|, so that X =X'"UWUW' andY =Y’, then
E(XN(RUU),YNB)=0.
Proof. (a) It suffices to prove that
(1) EX'NR,(Y'n(BUU))U (W' NB))=10.

Let ue X'NRand v € (Y N(BUU))U (W' N B), and assume that uv € E(G). We shall prove that
the existence of the edge uv either contradicts the maximality of some red tree or blue tree in H (property
(iii)), or it implies that (R, B) has a balanced decomposition of size at most 3; hence, f(¢,G) < 3.

Now, u is a red vertex in some red tree R.1 of H where, with a slight abuse of notation, either {cl} =
C' N R for some C' € C, UC, or ¢} = x. If v € W/ N B, then this contradicts the maximality of R.1. So let
v €Y'N(BUU). Then v is a blue or an uncoloured vertex in some blue tree By in H, where {d}}=D'nB
for some D' € C, UC, or d} =y. Our aim now will be to find a family 7 of vertex disjoint alternating trees
such that V(G)\U{V(S) : S € T} is a disjoint union of members of Pa, P3 and U;. Then f(¢,G) < 3 follows
from Claim 2.

If ¢} # x, then in H, by property (ii)(d), for some s > 1, we have distinct sets C*,...,C*"! € C. UC,
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and vertices ¢ € V(Rz2) N R,...,¢* € V(Re) N R such that ccl,...,c*c¢;™" € E(G), where ¢i = =
and C* = {ci,c},ct} as usual for 1 < i < s — 1. Note that this is all vacuous if s = 1, except that
ct = z. Similarly, by property (ii)(e), for some t > 1, we have distinct D*,..., D! € C, UC, and vertices
d> € V(Bg)NB,...,d" € V(Bg )N B such that d°dy,, ..., d'd,”" € E(G), where dj = y and D’ = {d], d}, &}
for 1 < j <t —1. This is all vacuous if ¢ = 1, except that d} = y.

Now, it may be the case that we have some of C',...,C° ! coinciding with some of D!,..., D1,
Let D = {C* : C" € {D',...,D'"'}}. Note that we have D C C. Now, we claim that we can take

T ={T}UT; UT3UT7T3, where
T <R0717u> U <Bdll7,v> U uv,
T = {(Rci‘,ci) Ucici g i2<i<s,0 ¢ D),
T, = {(Bd_g,dj>udjdi_1dﬁ_l:2§j <t,D’"' ¢ D},

T3 = {(ch,cp> U <Bdg,dq> U™ 1d?:2<p<s,2<qg<t,CP ' =D1 1 ¢ D}.
To prove that this choice of 7 works, we prove the following claim.
Subclaim 5.
(A) T is a family of vertex disjoint alternating trees.
(B) We have
@) UV(S): S €Ty = (o} OV({Rayu) — ) OV ((Byy.0) — df)

s t
- AT iy g
U _Uzv(<Rczr,c> YU U2V((Bd£,d ) —di)
= j=
uCctu---ucstubDru---uDTh.
Hence, V(G)\ (U{V(S) : S € T}) is a disjoint union of members of P2, P3 and Uy.

Proof. (A) Clearly, by Observation 3, T" and members of 77 and 73 are alternating trees. Also, if S € 73,
then S = (R, cP) U (Bga,d?) U cPcP=1d9 for some 2 < p < 5,2 < ¢ < t with CP~1 = D971, We have
b=t = @471 so that PP~ cP=1d9 € E(H). 1t is clear from this and Observation 3 that S is an alternating
tree.

Now, we prove that these alternating trees of 7 are vertex disjoint.

e Obviously, T is vertex disjoint from members of 73 U 75 U 73.

o Let 51 = (R, c) Ucici-lci™t € 71 and Sy = (Bd%-,dj> Udidi~tdi~1 € Ty, for some 2 < i < s,
2 < j < tand C71,DI71 ¢ D. Obviously, we have V((R.i,c¢')) N V((Bdi,dj» = (.
ci=l £ di~1 since Ci_l £ D=1 and céfl #* dg, since C*"' £ D7 if j <t—1, or cffl Zyif j=t. It
follows that cit, ;™' ¢ V(S). Similarly, d2~1, di~! ¢ V(S;). Hence, V(S1) NV (S2) = 0.

e Let S; = (Rei,c¢') U cici=ley™! € Ty and S3 = (Rep,cP) U (Bga,d?) U cPch=1d9 € Ty, for some
2<ip<s2<qg<t C~'¢gD, and CP7! = DI € D. Since i # p, clearly we have
V({(Rei, ")) NV ((Rer,c?) U (Bdg,dq)) = (. Also, ¢t # 271 and ¢; ' # dj as before: either
O #£ D%if g<t—1,0r ci ' #yif ¢g=1t. Tt follows that V(S;) NV (S3) = 0.

e Similarly, V(S2) NV (Ss) = 0 for every Sy € 75 and S3 € Ts.

(B) Note that the last part follows from Observation 1 and (2), since each set on the right hand side
of (2), apart from {z,y}, is a union of members of P2, P35 and U;, and that we have the disjoint union as
indicated in (2). So, it remains to prove (2). As usual, any meaningless terms, such as C'*, will be considered
non-existent.

We prove that the left hand side of (2) is contained in the right hand side.

e Obviously, V(T) C {z,y} UV ((Re1,u) — c}) U V((Bdi,w —dj)uctuD!

Now,
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e Let S = (R, ¢') Udccy lei™t € Ty, where 2 < i < s and C*"' ¢ D. Then, V(S;) C {z} U
V((Rei, ') — T) UCtUC* L. A similar argument holds if Sy € 75.

o Let S3 = (Rep,c?) U(Bys,d?) UcPcb=1d? € T3, where 2 < p < 5,2 < g < t,and CP~1 = D971, Then,
V(S3) C {z,y} UV ((Rer,c?) = ) UV ((Bgg,d?) — df) UCTUC 1.

Now, we prove the opposite containment.

o {cf,dj}UV((Rer,u)—c )UV((Bdi,W—di) C V(T). In particular, x € V(T) if s =1, and y € V(T)
ift=1.

eIf s >2and 2 <i < s, then {c.} UV ((Ru,c) —cl) € V(S1) for some Sy € Ty if C'~! ¢ D;
or {ci} U V((Rc%ci) — %) C V(Ss3) for some S3 € Ty if C*~! € D. A similar argument holds for
V((Bdg,dj> —d]) ift > 2 and 2 < j < t. Note that we have considered the set {x,y} here.

elets>2and1<i<s—1 IfC" ¢ D, then ¢, c; € V(S;) for some S; € 7. If C* € D, then
t>2,and C* = DJ for some 1 < j <t — 1. We have ¢!, € V(S3) for some S3 € 73, and ¢} € V(T)
if C* = D'; ¢} € V(S3) for some Sy € T if D™ ¢ D, j > 2 and t > 3; and ¢} € V(S3) for some
S; €Tz if DI~ €D, j>2andt>3. A similar argument holds for dﬁ and d{ ifl<j<t—1and
t>2.

We must also check that the right hand side of (2) is a disjoint union as stated. Indeed,
S = {(Re1.u) = ¢}, (Baz,v) = di} U {(Ret, ') ¢} :2<i < s} U{(By, /) —dj :2<j <t}

is a family of graphs, each of which is a red or blue alternating tree in a red or blue tree, with the seed

deleted. So for any F' € S, none of {z,y},C4,...,Cs—1,D1,...,Ds_1 intersects with F'. The members of S

are also vertex disjoint themselves. Finally, x and y do not belong to any of Cy,...,Cs_1,D1,...,D¢_1.
So, (2) holds. This proves part (B), and the proof of Subclaim 5 is complete. |

Finally, by Claim 2 and Subclaim 5(A), G[U{V(S) : S € T}] has a balanced decomposition of size at
most 3. With the last part of Subclaim 5(B), it follows that f(¢,G) < 3. This proves part (a) of Claim 4.
(b) It suffices to prove that

E(X'N(RUU)UWU (W' NR),Y' NnB)=0.

Switching the roles of X’ and Y’/, and of R and B, and with the fact that now W’ C X (instead of
W’ CY in (a)), (1) implies that

E(X'n(RUU)UW' NR),Y' NB)=1.

So, it remains to prove that E(W,Y' N B) = 0. Let u € W and v € Y’ N B, and assume uv € E(G).
Then u is an uncoloured vertex not used in H, and v is a blue vertex in some blue tree S in H. If u € Uy,
then this contradicts the maximality of S. If u € A € P for some A ¢ V(H), then this contradicts the
termination of the algorithm when H was constructed.

This completes the proof of Claim 4. |

Now we can easily finish the proof of Theorem 3. If |(X'UW)NU| < |Y'NU]|, it follows that | X NU| <
Y NU|. We delete from G the set (X N(BUU))U (Y NR)UZ. This leaves the sets X N R and Y N (BUU),
which, by Claim 4(a), are disconnected. Now, in X, with the exception of z and |Z| other red vertices, the
rest of the set has the same number of red and blue vertices, and so, |X N B| = 1(|X| - |Z| - 1—[X NU|).
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Similarly, [Y N R| = 3(|Y| - |Z] — 1 — Y nU|). So,
(XN (BUU)UY NR)UZ| IXNB|+|XNU|+|YNR|+|Z|

IN

1

SUXI =12 = 1= [X U +|X nU|+
1
S¥lI=1zl-1-1XnUl) +2]

1 n
2(|X|—|—|Y|) 1< 5 1.

Similarly, if [(X'UW)NU| > [Y'NU|, then | X NU| > |[Y NU|. We delete from G the set (X NB)U(Y N
(RUU))UZ. This leaves the sets X N (RUU) and Y N B, which, by Claim 4(b), are disconnected. Again,
we have [X N B| = 3(|X| - |Z| -1 - |XNUJ), and [Y NR| = 3(|Y| —|Z| =1 — [Y NnUJ). So a similar
calculation gives

|(XmB)U(Ym(RuU))UZ\<g—1.

In either case, we have deleted from G a cut-set of size at most |5 | — 1, which is a final contradiction.
This completes the proof of Theorem 3. O

3. COMPLETE MULTIPARTITE GRAPHS

Our next aim is to determine f(G), where G is a complete multipartite graph with at least 3 classes. The
case for complete bipartite graphs was solved in [9]. We may easily combine Theorems 1 and 2 of [9] to get
the following.

Theorem 4 (Theorems 1 and 2 of [9]). Let 1 <m < n. Then, f(Kmn) = ["2] + 3.

It turns out that the complete multipartite graphs version is a simple consequence of Proposition 1 and
Theorems 3 and 4. In this section, we denote the complete multipartite graph with class sizes k1 > --- > K
,,,,, k., where t > 3. Also, let V; be the vertex class with order k;, for 1 < ¢ < ¢. Then, we have the
following extension to Theorem 4.

Theorem 5. Let ky > --- > k; > 1, where t > 3. Then,

(3) F(K k) = L;;J 43

Proof. Let p = |V (Kk,, k)| = ki + -+ k. If ki =1, then Ky, x, = Ky, so Proposition 1 implies that
f(Kky....k,) = 2, and (3) holds. Now, assume that k; > 2, so that Ky, .k, is not a complete graph. We
shall consider two cases.
Case 1. k1 < [%1

In this case, we shall apply Theorem 3. For every 1 < i < t, we have |V (K, .., )\ Vil > [§]. This
implies that Ky, ., is [ §]-connected. Indeed, if C C V(Ky, .. x,)and |C| < |£] -1, then Ky, . x, —C must
contain vertices from at least two different classes. But, two vertices from different classes are neighbours,
and they form a dominating set for Ky, . x,, so that Kj, . i — C is connected. Hence by Theorem 3, we
have f(K, ) =3, and this is easily seen to be consistent with (3), since we have >'_, k; > | %], so that

t

[(kr =2)/ (s ki) | = 0.
Case 2. ky > [5] + 1.

For this case, we shall use the following simple observation.
Observation 6. If H D G are connected graphs and V(H) =V (G), then f(H) < f(G) O

We shall apply Theorem 4 and Observation 6 with n = k; and m = 2222 k;. Since Ki, ...k, O Kmn
and V(Kg, .. k) =V (Epmn), we have f(Kg,, k) < L”T*QJ + 3.

.....

..........
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Also, since V; is an independent set, it turns out that we can take balanced colourings for Ky, . &,
similar to those for K, , as described in [9] (leading to the lower bound). That is, if V! =V, U--- UV}, we
take the balanced colouring (R, B) for Ky, ..k, where,

o if (20 —2)m +2<n < (20—1)m+ 1 for some £ € N, then [Vi NR| = |[ViNB| = [§];
o if 20 —1)m+2 < n < 2m+1 for some £ € N, then [V' N R| = m, [ViNR| = [*5™], and
VinB|=[25"].

The exact same arguments as in [0] again lead to f(Kj,,....5,) = [2=2] + 3. Indeed, for the first balanced

colouring, any balanced decomposition has size at least
2P2W +122W_1)m+ﬂ +1=20+41= {”_QJ +3.
m m

m

For the second balanced colouring, any balanced decomposition has size at least

(e e s = RS R ST B L=t PR

m m m

So, (3) holds in this case, and we are done. O

4. GENERALISED ©-GRAPHS

In this section, we shall study the function f(G), where G is a generalised ©-graph. That is, G is a graph
which is a subdivision of a multiple edge. More precisely, G is the graph union of ¢ > 2 paths, @1,...,Q:
say, with each having the same two end-vertices, z and y say, so that V(Q;) NV (Q,) = {x,y} for any i # j.
In other words, the @); are pairwise internally vertex disjoint paths. In addition, all but at most one of the
Q; have order at least 3.

We begin by recalling a result and a conjecture from [9].

Theorem 6 (Theorem 4 of [J]). Let n > 3. Then, f(C,) = | 5] + 1, where C, is the cycle of order n.
Conjecture 7 (Conjecture 1 of [J]). Let G be a 2-connected graph of order n. Then f(G) < [§] + 1.

So, studying f(G) for generalised ©-graphs G is related to both Theorem 6 and Conjecture 7, since
cycles are generalised O-graphs, and generalised ©-graphs are 2-connected. In Theorem 8, we shall prove
that the same upper bound as in Theorem 6 holds for generalised ©-graphs, and that we have a matching
lower bound which is asymptotically tight. This result can be considered as a partial solution to Conjecture
7.

Theorem 8. Let G be a generalised ©-graph, formed by uniting the pairwise internally vertex disjoint paths
Q1,-..,Q, wheret > 2, [V (Q1)] > --- > |V(Q)] > 2, and |V(Qi—1)| > 3. Let |V(G)| =n >t + 1. Then,
we have the following.

(a) f(G) = [5], if V(Q)| = 5] + 1. f(G) = ["=55] if [V(Qi)| < | 5] for every i.

(b) f(G) < [5]+1.

In particular, if t is fized, then f(G) = § + O(1).

Proof. Let the common end-vertices of the paths Q1,...,Q; be z and y. That is, {z,y} = V(Q;) N V(Q;)
for any i # j.

(a) Let [V(Q1)] > |5] + 1. We take a balanced colouring (R, B) for G where R = {v € V(Q1) :
dg,(v,r) < || =1}, and B = V(G) \ Rif nis even, B = V(G — 2) \ R if n is odd, where z € V(Q1) is
the vertex with dq, (z,2) = | 5] (so, z is the only uncoloured vertex). We have |R| = |B| = |5 ]. Now, any
balanced decomposition P of G can only have at most two sets containing vertices of R. Otherwise, if P has
at least three such sets, then P must contain a set A such that ANR C R\ {z,z'}, where 2’ € V(Q1) is the
vertex with dg, (2',2) = | 5] — 1. But then, G[AN R] is disconnected from G[B], a contradiction. Now, since
there is at most one uncoloured vertex, we have |P| < 3. If [P| = 3, then n is odd, and {z} is a member of

P. But then, it is not possible to have a balanced decomposition of G — z into two sets, since a balanced set



14 SHINYA FUJITA AND HENRY LIU

containing z’ must contain all other red vertices. Hence, we have |P| < 2, which implies that f(G) > [§].
Now, let |V(Q;)| < [ 5] for every i. Note that we have ¢ > 3 in this case. We take a balanced colouring

(R, B) for G as follows. For every i, let ¢; = |[V(Q;)| — 2 be the number of internal vertices of @Q;. Let

m=n—2= 22:1 ¢; be the total number of internal vertices of all the paths @;. We claim the following

Claim 7. There exists a partition [t] = U UW, where U, W # (), such that > .., ¢ > % and Zjew G > %

Proof. Wehaveq; > --- > ¢q >0and ¢;—1 > 1. Wearedoneif g, > %, since then we have 3 < ¢ < |5 ] -1,
and We can take U = {1} and W = {2,...,t}. So, assume q; < 5. Let p > 2 be the integer such that

Zl 1 ¢ < Band Y g > 2 We are done if Y g <2 (m which case p < t), since then we can
take U = {17 .,ptand W= {p+ .,t}. So, assume >_7_, ¢; > 2. But then, we have ¢, > 2 > ¢y, a
contradiction. 0

Now, take a partition [t] = UUW as given by Claim 7, and assume that >, ¢; < ZjEW gj. Take
R = U;cr V(Qi — {z,y}), so that %32 < |R| < |%52]|. Now, we want to take B C Ujew V(Qj — {z,y})
with | B| = | R|, spreading the blue vertices “as evenly as possible”. More precisely, note that

B, () 1

Sjew s~ (A2) T2

so that we can take B C ;e V(Q; — {,y}) where no two adjacent vertices in ;e V(Q; — {z,y}) are
uncoloured. Note that x and y are uncoloured vertices.

Let P be a balanced decomposition for (R, B). Firstly, suppose that  and y are in the same member
C of P. Then, this implies that C D R U B. Otherwise, if we have a vertex v € R\ C (u € B\ C),
then in G — C, u is disconnected from all other blue (red) vertices. Now, note that |C| > n — |W|, for
otherwise |C| < n — |[W|, then C misses at least two uncoloured vertices in some Q; — {z,y} with j € W,
which is not possible by the choice of B, and G — (RU B) C Uy V(Q; — {z,y}). Hence, we have
F@) = [Clzn—|W|=>n—t+1>[n=lH],

Now, suppose that x and y are in different members of P, say, C, and Cy,. We can apply a similar
argument to the previous case with C, UC), in place of C, to get C, UCy D RUB, and [C,UCy| > n—t+1.
Hence, £(G) > max{|Cy, G, [} > [=£L].

(b) Let (R, B) be a balanced colouring for G. We shall consider two cases: when [V(Q;)| < [§] +1 for
every i, and when [V(Q1)| > | 5] + 2

Case 1. |V(Q;)| < [5] + 1 for every i.
Suppose that we cannot find a suitable balanced decomposition for G. We begin by proving two claims.

These will then help us to describe an algorithm which finds a balanced decomposition of G with size at
most | 5| + 1, and with at most three parts, which will prove Case 1.

Claim 8. There exists a balanced set A C V(G) with |A| < | 5] such that exactly one of x,y is in A.

Proof. If either z or y is uncoloured, then we can simply take A = {x} or A = {y}, whichever is uncoloured.
So, assume that both x and y are coloured, and without loss of generality that x € R. Suppose that
such a balanced set A cannot be found. Then, for any 1 < i < ¢ and any 2’ € V(Q; — {z,y}), since
V(Qi—y)| <[], the path zQ;2’ C Q; satisfies [V (zQ;2") N R| > |V (2Q;2") N B|. So in particular, we have
[V(Qi—y)NR| > |V(Q; —y)N B|+1 for each i. So,

|R|22|V yYNR—(t—-1)=) (Vv y)N Bl +1) - (t—1)

i=1

= Z|V y)NB|+1>|B|.
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Equality holds if and only if y € B and |V(Q; —y) N R| = |V(Q; —y) N B| + 1 for every i. But then
{V(Q1),V(Q2 — {z,y}),...,V(Q: — {=,y})} is a balanced decomposition for G, with size at most [ 5| + 1,
which is a contradiction. This proves Claim 8. |

Claim 9. Let A C V(G —y) be a balanced set with x € A, |A| < |§] -1, and N(A)\{y} C R. Then, for some
1 <j <t, we can find a non-empty balanced set C C V(Q; —y) \ A, with N(C)NA#0, and |C| < | 5] —

Proof. Define I C [t] by I = {j € [t] : V(Q; —y) \ A # 0}. Note that [I| > 2, otherwise, |[A] > n — 5] >
| 5] —1, a contradiction. If no such balanced set C' exists, then for each j € I, since the vertex of N(A)NV(Q;)
io xed, and V(@ — {2 y})| < |2) — 1, we have [(V(Q5 — 9)\ A) N Bl > [(V(@Q; — )\ A) N B| +1, by a
similar argument as in Claim 8. But then, we have

(VIANANR] > > |(V(Q;—y)\A)NR[>D |(V(Q; —y)\ A) N B|+2
Jjel jeI
> [(V(G)\ A)n B|.
We have a contradiction, since V(G) \ A is a balanced set. Claim 9 follows. O

We remark that with A as in Claim 8 or Claim 9, we have G — A is connected. We can now describe the
algorithm.

Step 1. By Claim 8, without loss of generality, we can find a balanced set A1 C V(G — y) with € Ay, and
|Ai| < [5]. If |A1] = [ 5], stop; we have a suitable balanced decomposition {41,V (G)\ A;} for G.
Otherwise, [A;] < | 5] — 1; go to Step 2.

Step 2. If N(A1)\ {y} C RU B, go to Step 3. Otherwise, there exists an uncoloured vertex in N(4;) \ {yv};
append it to A;. We have another balanced set Ay with A; C Ay C V(G —y) and |As| = |41| + 1.
If |A2| = | 5], stop; we have a suitable balanced decomposition {As, V(G) \ Aa} for G. Otherwise,
|Az| < [5] — 1; repeat Step 2, using Ay for A;.

Step 3. If N(A1)\{y} € Ror N(A4;)\{y} C B, go to Step 4. Otherwise, there exist a red vertex and a blue
vertex in N (A1)\{y}; append them to A;. We have another balanced set Az with 41 C A3 C V(G—vy)
and |Az| = |Ay] +2. If |[A3] = [§] or [§] + 1, stop; we have a suitable balanced decomposition
{A3,V(G) \ Az} for G. Otherwise, |A3| < [ 5] — 1; go back to Step 2, using Az for A;.

Step 4. By Claim 9, for some 1 < j < ¢, we can find a non-empty balanced set C' C V(Q; —y) \ A1, with
N(C)NA; #0,and |C| < [ §] — 1. We have a balanced set A;UC C V(G —y) with [A; UC| > |A4].
If |A; UC| > | 5], stop; we have a suitable balanced decomposition {A;, C,V(G) \ (A1 UC)} for G.
Otherwise, |[A; UC| < [ 4] —1; go back to Step 2, using A; U C for A;.

This algorithm must terminate, since as we go through each step, we are creating new balanced sets
with strictly increasing orders. When the algorithm terminates, we end up with a balanced decomposition
of size at most | 4] 41 for G (and with at most three parts), a final contradiction. This completes the proof
of Case 1.

Case 2. |V(Q1)| > [5] +2.

We shall use a similar idea to the proof in [9] of the upper bound of Theorem 6, that f(C,) < [§] +1,
where C), is the cycle with n vertices.

We number the vertices of G with 1, ..., n as follows. The vertices of @1 are numbered with 1,...,|V(Q1)],
with vertex v € V(Q1) receiving the number dg, (v, z)+1. Next, the vertices of Q2 —{z, y} are numbered with
the next |V (Q2)|—2 integers, ordered by distance from y. We then repeat this with Qs—{z,y},...,Q:—{z, y}
successively.

Now, for i € [n], define A(i) C V(G) as follows.

{i,i+1,...,i+EJ—1} if1§i§[§]+1,

A(i) = n n
{z’,i—f—l,...,n}u{l,...,i— {ﬂ —1} if b]+2gign.
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In other words, with the numbering, A(¢) is the | 2] consecutive vertices of V(G), starting at ¢, modulo

2
n. We have the following claim.

Claim 10. Let A C V(G) be a set of consecutive vertices in the numbering, modulo n, with |A|, [V(G)\ A| >
[5] —1. Then, both G[A] and G[V(G) \ A] are connected.

Proof. Let y be numbered with j. Since [V(Q1)| > |5 ]+2, we have [{j+1,...,n}| <n—([5]+2) =[§]-2.
So, neither A nor V(G)\ A can be a subset of {j +1,...,n}, since |[A|,|[V(G)\ A] > [§] — 1. It is then easy
to check the following.

o If |AN{z,y}| =0 or 2, then one of A and V(G) \ A is a subset of V(Q1 — {x,y}) which induces a
sub-path, and the other induces a subgraph of G which is the union of Qs, ..., Q; with two disjoint
sub-paths of ()1, one containing z, the other containing y.

o If |[ANn{x,y}| =1, then A and V(G)\ A are both subdivided stars, one with centre z, the other with

centre y.
In either case, both G[A] and G[V(G) \ A] are connected. So Claim 10 follows. O
We may now complete Case 2 in a similar way to the proof of Theorem 6 in [9]. For i € [n], define

(i) = |A(i) N R| — |A(i) N B|. For every i, we have [g(i + 1) — g(i)] < 2 (modulo n), and >.1" , (i) =
5](|R| — |B|) = 0. We have two possibilities.
e Either, there exists ¢ with g(i) = 0, whence {A(7), V(G) \ A(7)} is a suitable balanced decomposition
for G, since |A(i)| = [§] > [5] — 1, and [V(G) \ A(4)| = [5] > [5] — 1, so that Claim 10 applies.
e Or, there exists ¢ with {g(i),9(¢i + 1)} = {—1,1}, modulo n. If g(i) = —1 and ¢g(i + 1) = 1,
then, with respect to the numbering, modulo n, the first vertex of A(¢) is blue, A(7) has one more
blue vertex than red, and the first vertex outside of A(i) is red. If w is this red vertex, then
{A(0) U{w}, V(G)\ (A(i) U {w})} is a suitable balanced decomposition for G, since A(i) U {w} and
V(G) \ (A(7) U {w}) are still consecutive vertices with respect to the numbering, modulo n, and
A U{w}| = |5] +1>[5] =1 and [V(G)\ (A(i)) U{w})| = [§] — 1, so that Claim 10 applies. A

9
|

similar argument holds if g(i) = 1 and g(i + 1) = —1 for some 4; we just switch the roles of red and
blue.
The proof of Case 2 is now complete, and this proves Theorem 8. |

5. CONCLUDING REMARKS
Theorem 3 and Conjecture 7 suggest a more general problem.

Problem 9. Let n,t € N withn—1 >t > 2. Let G be a graph of order n, with n sufficiently large.
Determine a function g(n,t) such that the following holds: If G is g(n,t)-connected, then f(G) <t+ 1.

Looking at Theorem 3, we find that g(n,2) = [ %] is suitable, and moreover, the converse also holds.

Along with Conjecture 7, we guess that g(n,t) = | %] is a good candidate. But we remark if g(n,t) = [ %],
then the converse is not true for ¢ > 3. There is a counter-example: Take the graph formed by a K, _; with
another vertex joining to a vertex of the K, _1.

We suspect that Problem 9 is not easy, given the difficulty of Conjecture 7. But a partial result for
Problem 9 may be of interest. For example, the case ¢t = 3.

Proposition 1 and Theorem 3 also imply that we can determine the time complexity for deciding whether
a graph G satisfies f(G) € {2,3} or not. The problem of determining a fast algorithm for finding the vertex
connectivity kK = k(QG) of a graph G has been considered by many people (Kleitman [13], Hopcroft and Tarjan
[12], Even [5], Even and Tarjan [6], Galil [10], Cheriyan and Thurimella [2, 3], Nagamochi and Ibaraki [14, 15],
and Henzinger et al [11], among others). It is known that such an algorithm can be carried out in polynomial
time. A result of Henzinger et al [11] states that, for a graph G of order n and with connectivity &, there is

an algorithm which determines the connectivity of G in time O(min(x® + n, kn)kn).
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Corollary 10. Let G be a connected graph of order n. Then, we can decide whether f(G) =2, or f(G) = 3,
or f(G) > 4, using an algorithm with running time O(n%). O

The balanced decomposition number will assure us the existence of a good structure, especially when it
n

is small. For example, from Theorem 3, if a graph G of order n is | § |-connected, then we can always find a
“nearly balanced matching” for any arbitrary number and position of red and blue vertices (Here, “nearly
balanced matching” means vertex-disjoint paths of order at most 3 whose end-vertices are coloured by red
and blue, respectively).

Moreover, these are related to an existence of so called “non-separating subgraphs”, that is, the subgraphs
whose deletion preserve high connectivity. For any disjoint subsets R, B C V(@) with |R| = |B| = k in an
m-connected graph G with m > k, by using Menger’s theorem, there are k vertex disjoint paths @1, ..., Qk
from R to B. However, in general, we can never hope for high connectivity of G — Ule V(Q)-

As for this problem, our results give the following.

Corollary 11. Let m,n € N with m > | %], and let G be an m-connected graph of order n > 2. Then, for
any disjoint subsets R, B C V(G) with k = |R| = |B| < %, there are k vertex disjoint paths Q,. .., Qy from

R to B, such that G — Ule V(Q:) is (m — 3k)-connected.

Proof. Since G is |5 |-connected, by Proposition 1 and Theorem 3, we have f(G) € {2,3}. So the balanced

colouring (R, B) for G has a balanced decomposition P of size at most 3. This means that there are exactly
k vertex disjoint sets of P containing coloured vertices, with each one having exactly one red vertex and one
blue vertex. Let Ay,..., Ay € P be these k sets. For each A;, since |A4;] < 3, one can easily check that there
exists A} C A; such that G[A]] is an R — B sub-path of G. The corollary follows by letting Q; = G[A]] for
every i, since clearly the Q; are vertex disjoint, and we have | Ule V(Q;)| < 3k, so that G — Ule V(Q;) is
(m — 3k)-connected. O

Thus, a graph with a small balanced decomposition number is likely to have a good structure in view of
non-separating subgraphs. In this sense, further study in this area will be interesting and significant.
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