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Abstract

A connected graph G with maximum degree ∆ and edge chromatic number
χ′(G) = ∆+1 is called ∆-critical if χ′(G−e) = ∆ for every edge e of G. In this
paper, we consider two weaker versions of Vizing’s conjecture, which concern
the spectral radius ρ(G) and the signless Laplacian spectral radius µ(G) of G.
We obtain some lower bounds for ρ(G) and µ(G), and present some cases where
the conjectures are true. Finally, several open problems are also proposed.
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1 Introduction

We consider simple connected graphs in this paper. Let G = (V (G), E(G)) be a
graph with vertex set V (G), edge set E(G), with |V (G)| = n, |E(G)| = m. For a
vertex x, we set N(x) = {v : xv ∈ E(G)} and d(x) = dG(x) = |N(x)|, the degree of
x in G. The maximum and minimum degrees of G are denoted by ∆(G) = ∆ and
δ(G) = δ, respectively. A vertex of maximum degree in G is called a major vertex.
We use d∆(x) to denote the number of major vertices of G adjacent to x.

The adjacency matrix of a graph G is A(G) = (aij), where aij = 1 if two vertices
i and j are adjacent in G, and aij = 0 otherwise. Let D(G) = (dij) be the diagonal
degree matrix of G, i.e., dii is the degree of the vertex i in G, and dij = 0 otherwise.
We call the matrix L(G) = D(G)−A(G) the Laplacian matrix of G, and the matrix
Q(G) = D(G) + A(G) the signless Laplacian matrix or Q-matrix of G. We denote
the largest eigenvalues of A(G) and Q(G) by ρ(G) and µ(G), respectively, and call
them the spectral radius and the signless Laplacian spectral radius (or the Q-spectral
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radius) of G, respectively. For background on the matrices A(G) and Q(G) of G,
the reader is referred to [6, 7] and the references therein.

Brualdi and Solheid [1] proposed the following problem concerning the spectral
radius of graphs: Given a set G of graphs, find an upper bound for the spectral radius
over all graphs of G, and characterize the graphs in which the supremum spectral
radius is attained. Inspired by this problem, the eigenvalues of special classes of
graphs are well studied in the literature, such as graphs with given chromatic number
[9], matching number [10], diameter [11], and domination number [28]. One can refer
to a recent, comprehensive book by Stevanović [29] for more details. Also, the theory
of eigenvalues of graphs has found successful applications in other disciplines such
as chemistry and biology, and a typical and widely studied invariant is the energy
of graphs, for which one may refer to [16, 17, 18, 19] and the references therein.

A k-edge-coloring of a graph G is a function φ : E(G) → {1, . . . , k} such that
φ(e) 6= φ(e′) for any two adjacent edges e and e′. That is, if we consider {1, . . . , k}
as a set of k colors, then any two adjacent edges receive different colors. The edge
chromatic number of G, denoted by χ′(G), is the smallest integer k such that G has
a k-edge-coloring. The celebrated Vizing’s Theorem [31] states that χ′(G) is either
∆ or ∆ + 1. A graph G is class one if χ′(G) = ∆ and class two if χ′(G) = ∆ + 1.
A class two graph G is ∆-critical if χ′(G− e) = ∆ for each edge e of G and it has
maximum degree ∆. We simply say that G is critical if we do not wish to refer to
its maximum degree ∆.

The theory of edge-colorings in graphs is one of the most fundamental areas in
graph theory, and often appears in various scheduling problems like the file transfer
problem on computer networks. The main tools in previous research of edge-coloring
problems include Vizing’s Adjacency Lemma, the discharging method, the Vizing
Fans, the Kierstead Paths and the Tashkinov Trees. One may refer to the mono-
graph [30] for details. Thus according to the Brualdi-Solheid problem, it would be
interesting to consider the spectral properties of the class two graphs, specifically,
the edge chromatic critical graphs.

Vizing [31] proposed the following conjecture on the size of critical graphs.

Conjecture 1.1 If G = (V,E) is a ∆-critical graph, then

m ≥ 1

2
(n(∆− 1) + 3) . (1)

The intriguing Conjecture 1.1 has attracted much attention. It is known to be
true for ∆ ≤ 6, but a complete solution to the conjecture itself seems far from being
found. Some best known lower bounds on size of critical graphs can be found in
[21, 24, 33]. One may refer to [30, 35] for detailed discussions.

It is well known in spectral graph theory that

ρ(G) ≥ 2m

n
, µ(G) ≥ 4m

n
, (2)
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with equality if and only if G is regular. While Conjecture 1.1 remains unsolved,
motivated by the inequalities in (2), we consider the following spectral versions of
the conjecture.

Conjecture 1.2 If G = (V,E) is a ∆-critical graph, then

ρ(G) ≥ ∆− 1 +
3

n
. (3)

Conjecture 1.3 If G = (V,E) is a ∆-critical graph, then

µ(G) ≥ 2∆− 2 +
6

n
. (4)

Thus, Conjectures 1.2 and 1.3 allow us to provide another view to Conjecture
1.1. These two conjectures seem to be difficult as well. It was proved in [8] that, for
a connected graph G,

µ(G) ≥ 2ρ(G), (5)

and equality holds if and only if G is regular. Hence Conjecture 1.2 implies Con-
jecture 1.3. Using known bounds on the average degree of graphs (see, for example
[34]) and inequalities in (2), we have

ρ >
8

3
if ∆ = 3, ρ >

24

7
if ∆ = 4, ρ >

30

7
if ∆ = 5, ρ >

66

13
if ∆ = 6.

Thus, roughly, if n ≥ 40, Conjectures 1.2 and 1.3 hold for ∆ ≤ 6.
In general, Fiorini’s bound on size (see, for example, [35]) implies

ρ ≥ ∆ + 1

2
(if ∆ odd), ρ ≥ ∆ + 2

2
(if ∆ even).

Sanders and Zhao’s bound on size [24] implies

ρ ≥ 1

2
(∆ +

√
2∆− 1) for all ∆ ≥ 2.

Woodall’s bound on size [33] implies

ρ ≥ 2

3
(∆ + 1) for all ∆ ≥ 2.

For ∆ ≥ 3, any ∆-critical graph is irregular [35, Page 38] and contains no cut
vertices [35, Page 22]. The upper bounds for the (signless Laplacian) spectral radius
of irregular graphs are extensively studied, and one may refer to [2, 5, 20, 22, 25]
and [28, Lemma 4].

In this paper, inspired by Conjectures 1.2 and 1.3, we will study the lower bounds
for the spectral radius of ∆-critical graphs. Although we cannot prove Conjectures
1.2 and 1.3 completely, we shall nonetheless obtain better ratios for ρ

∆ and µ
∆ than

other papers have for 2m
n∆ and 4m

n∆ .
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2 Two Examples

Although Conjectures 1.2 and 1.3 seem hard to tackle, many examples (especially
those critical graphs of small order) and related results reveal that these two con-
jectures may be true.

Example 2.1 Chetwynd, Hilton [3] proved that if G is obtained from Kn by remov-
ing any n−3

2 edges, for odd n ≥ 5, then G is (n − 1)-critical. Hence in this case,
∆ = n− 1, and m = 1

2(n2 − 2n+ 3) = 1
2(n(∆− 1) + 3). We have

2m

n
= ∆− 1 +

3

n
.

From the inequalities in (2), we immediately have that Conjectures 1.2 and 1.3 hold
for G.

Suppose that x ∈ V (G) with d(x) > 2. We say that the graph H is obtained
from G by splitting x into two vertices u and v (u, v /∈ V (G)) if

V (H) = V (G− x) ∪ {u, v},
E(H) = E(G− x) ∪ {uv} ∪ {uy | y ∈ A} ∪ {vz | z ∈ B},

for some non-empty, disjoint sets A and B with A ∪B = N(x).
Let G = Otr be the complete t-partite graph having r vertices in each class.

Example 2.2 Yap [35, Theorem 4.4, Page 28] obtained the following: Let r and t
be two positive integers such that rt ≥ 4 is even. Let H be a graph obtained from
G = Otr by splitting a vertex x into two vertices u and v. Then H is critical.

We can easily see that ∆(H) = tr − r, |V (H)| = |V (G)|+ 1 = tr + 1, |E(H)| =
|E(G)|+ 1 = 1

2 tr(tr − r) + 1. Thus, we have

2|E(H)|
|V (H)|

=
tr(tr − r) + 2

tr + 1
> (tr − r)− 1 +

3

tr + 1
= ∆(H)− 1 +

3

|V (H)|
.

From the inequalities in (2), Conjectures 1.2 and 1.3 hold for H.

3 Lower Bounds for ρ(G) and µ(G)

In this section, we present two lower bounds for ρ(G) and µ(G). As Conjectures 1.2
and 1.3 hold for ∆ ≤ 6, our results will be new contributions to the conjectures for
∆ ≥ 7.

Lemma 3.1 [32] (Vizing’s Adjacency Lemma) Suppose G is a ∆-critical graph and
vw ∈ E(G). Then d∆(v) ≥ ∆− d(w) + 1.
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Lemma 3.2 [15] Let M = (mij) be an n × n irreducible non-negative matrix with
spectral radius (i.e., largest eigenvalue) ρ(M), and let si(M) be the ith row sum of
M , i.e., si(M) =

∑n
j=1mij. Let P be any polynomial. Then

min{si(P (M)) | 1 ≤ i ≤ n} ≤ P (ρ(M)) ≤ max{si(P (M)) | 1 ≤ i ≤ n}.

Moreover, if the row sums of M are not all equal, then both of the inequalities above
are strict.

Now we are ready to present the main results of this paper. We first consider
the adjacency spectral radius.

Theorem 3.3 Let G be a ∆-critical graph with ∆ ≥ 7. Then

ρ(G) ≥ 1

8

(
3∆ + 1 +

√
(3∆ + 1)2 + 16(∆− 1)

)
.

Proof. For a vertex v in V (G), let w be a vertex adjacent to v with minimum
degree, say b, among all neighbors of v. Then by Lemma 3.1 we have d∆(v) ≥
∆− d(w) + 1 = ∆− b+ 1 and thus

b ≥ ∆− d∆(v) + 1.

Writing A = A(G), it follows that

sv(A
2) =

∑
u∈N(v)

d(u)

≥ d∆(v)∆ + (d(v)− d∆(v))b

≥ d∆(v)∆ + (d(v)− d∆(v))(∆− d∆(v) + 1)

= d∆(v)2 − (d(v) + 1)d∆(v) + (∆ + 1)d(v)

=

(
d∆(v)− 1

2
(d(v) + 1)

)2

+
1

4

(
4∆d(v) + 2d(v)− d(v)2 − 1

)
≥ 1

4

(
4∆d(v)− (d(v)− 1)2

)
(6)

≥ 1

4
(3∆d(v) + d(v) + ∆− 1) ,

where the last inequality follows from (d(v)− 1)2 ≤ (∆− 1)(d(v)− 1). Since d(v) =
sv(A), it follows that

sv(A
2) ≥ 1

4
(3∆ + 1)sv(A) +

1

4
(∆− 1).

By employing Lemma 3.2, noting that ρ(A) = ρ(G), we have

ρ(G)2 − 1

4
(3∆ + 1)ρ(G)− 1

4
(∆− 1) ≥ 0,
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and hence

ρ(G) ≥ 1

8

(
3∆ + 1 +

√
(3∆ + 1)2 + 16(∆− 1)

)
.

This implies the result.

It is easy to see that

1

8

(
3∆ + 1 +

√
(3∆ + 1)2 + 16(∆− 1)

)
≥ 3∆ + 2

4
.

Therefore, one obtains the following concise bound

Corollary 3.4 Let G be a ∆-critical graph with maximum degree ∆ ≥ 7. Then

ρ(G) ≥ 3∆ + 2

4
.

Next, we consider the signless Laplacian spectral radius. For a ∆-critical graph
G, in view of Theorem 3.3 and Corollary 3.4, one has

µ(G) ≥ 1

4

(
3∆ + 1 +

√
(3∆ + 1)2 + 16(∆− 1)

)
≥ 3

2
∆ + 1. (7)

The next theorem provides another lower bound for the signless Laplacian spec-
tral radius of ∆-critical graphs.

Theorem 3.5 Let G be a ∆-critical graph with maximum degree ∆ ≥ 7, and δ ≥ 2
be the minimum degree of G. Then

µ(G) ≥ 1

8

(
4∆ + 3δ + 2 +

√
(4∆ + 3δ + 2)2 − 32

)
.

Proof. WriteQ = Q(G), D = D(G) and A = A(G). For a vertex v ∈ V (G), we have
sv(Q) = 2d(v), sv(D

2) = sv(DA) = d(v)2 and sv(AD) = sv(A
2) =

∑
u∈N(v) d(u).

Then

sv(Q
2) = sv(D

2 +DA+AD +A2)

= sv(D
2) + sv(DA) + sv(AD) + sv(A

2)

≥ 2d(v)2 +
1

2

(
4∆d(v)− (d(v)− 1)2

)
(8)

=
3

2
d(v)2 + (2∆ + 1)d(v)− 1

2

=
1

4
(3d(v) + 4∆ + 2) sv(Q)− 1

2

≥ 1

4
(4∆ + 3δ + 2) sv(Q)− 1

2
,
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where (8) follows in the same way as (6) in Theorem 3.3. By Lemma 3.2, noting
that ρ(Q) = µ(G), we have

µ(G)2 − 1

4
(4∆ + 3δ + 2)µ(G) +

1

2
≥ 0,

and hence

µ(G) ≥ 1

8

(
4∆ + 3δ + 2 +

√
(4∆ + 3δ + 2)2 − 32

)
.

This implies the result.

It is easy to see from Theorem 3.5 that

µ(G) ≥ 1

8

(
4∆ + 3δ + 2 +

√
(4∆ + 3δ + 2)2 − 32

)
≥ ∆ +

3δ

4
+

3

8
. (9)

Therefore, inequalities (7) and (9) yield the following simple bound for the sign-
less Laplacian spectral radius of ∆-critical graphs.

Corollary 3.6 Let G be a ∆-critical graph with ∆ ≥ 7 and minimum degree δ ≥ 2.
Then

µ(G) ≥


∆ +

3δ

4
+

3

8
if δ ≥ 4∆ + 5

6
,

3

2
∆ + 1 if δ <

4∆ + 5

6
.

4 Miscellaneous Results

In this section, we present some results for the spectral radius of ∆-critical graphs
with a small number of major vertices. The core of G, denoted by G∆, is the
subgraph of G induced by the vertices of degree ∆(G).

Lemma 4.1 [12] Let G be a connected graph of Class 2 and ∆(G∆) ≤ 2. Then the
following statements hold:

(i) G is critical;

(ii) δ(G∆) = 2;

(iii) δ(G) = ∆− 1, unless G is an odd cycle.

From Lemma 4.1, we can deduce the following.

Theorem 4.2 Let G be a ∆-critical graph of order n ≥ 5 with maximum degree
∆ ≥ 4 and ∆(G∆) ≤ 2. Then Conjectures 1.2 and 1.3 hold.
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Proof. For any connected graph G, from [13] or [36], we know ρ(G) ≥
√

1
n

∑
d2
i ,

where (di) is the degree sequence of G. Equality holds if and only if G is a regular
graph or a semi-regular bipartite graph. As ∆ ≥ 4, G is not a cycle. A consequence
of Lemma 3.1 states that a ∆-critical graph G contains at least three major vertices
[35, Page 24]. Together with Lemma 4.1, we have

ρ(G) ≥
√

1

n
(3∆2 + (n− 3)(∆− 1)2) > ∆− 1 +

3

n
,

and Conjecture 1.2 holds. As µ(G) ≥ 2ρ(G) from (5), we conclude that Conjecture
1.3 also holds.

Obviously, Theorem 4.2 contains the case for |G∆| = 3, as any graph induced by
three vertices has maximum degree at most 2.

It should be noted [4, 27] that, there does not exist any ∆-critical graph G of
even order with |G∆| = 4 or |G∆| = 5. Thus we consider such graphs of odd order
in these cases.

Theorem 4.3 Let G be a ∆-critical graph of order n = 2k + 1 with |G∆| = 4 or
|G∆| = 5. Then Conjectures 1.2 and 1.3 hold.

Proof. In [4] for |G∆| = 4, and in [26] for |G∆| = 5, it was shown that under the
assumption, m = k∆ + 1 = 1

2((n− 1)∆ + 2). From the inequalities in (2), we have

ρ(G) ≥ 2m

n
= ∆− ∆

n
+

2

n
≥ ∆− 1 +

3

n
,

and thus Conjecture 1.2 holds. Conjecture 1.3 can be proved similarly.

5 Further Discussions

We conclude with some remarks and open problems in this section. For a connected
graph G of order n and size m, it was obtained in [14] that

ρ(G) ≤
√

2m− n+ 1. (10)

By considering Conjecture 1.2, we have the following.

Corollary 5.1 Let G be a ∆-critical graph. If Conjecture 1.2 is true, then we have

m ≥ 1

2

(
∆2 − 2∆ + n

)
. (11)
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In [32], it was obtained that

m ≥ 1

8
(3∆2 + 6∆− 1). (12)

However, inequality (11) is stronger when compared with (12), if ∆ is not too large.
Also, from [33], it was obtained that

m ≥ n

3
(∆ + 1). (13)

We find that if n ≥ 3∆2−6∆
2∆−1 , then (13) is better than the bound (11). But if

n ≤ 3∆2−6∆
2∆−1 , then (11) is better than (13).

Conjectures 1.2 and 1.3 seem to be difficult to deal with. Moreover, there are
also many other problems in this topic.

For ∆ = 2, the 2-critical graphs are odd cycles, and the only extremal graph
with ρ = ∆ − 1 + 3

n is C3. For a ∆-critical graph G with ∆ ≥ 3, it is irregular,
thus from inequalities in (2), the equality case of Conjecture 1.2 does not hold. For
∆ ≥ 3, we propose the following problem.

Problem 5.2 Characterize the ∆-critical graphs of order n with ∆ ≥ 3 and mini-
mum spectral radius (or signless Laplacian spectral radius).

From [35, Pages 45, 49], there are no critical graphs of order n = 4, 6, 8, 10. For
n = 5, there are exactly three critical graphs [35, Page 45] with different maximum
degrees. For n = 7, there are 21 critical graphs with ∆ ≥ 3 [35, Page 48]. It is
easy to find the eigenvalues in these two cases (see [23], Graphs 727–730, 1075–1076,
1100–1106, 1225–1226, 1231–1233, 1216, 1249, 1250). For general n, the same task
seems to be much more difficult.

Hajós and Jakobsen provided a construction for ∆-critical graphs from some
known ∆-critical graphs of smaller order. This construction is now usually called
the HJ-Construction, and is carried out as follows (see, for example [35, Page 30,
Theorem 4.6]). Let G and H be two ∆-critical graphs of order n1 and n2, re-
spectively. Let K be a graph obtained from G and H by identifying u ∈ V (G)
and v ∈ V (H) such that dG(u) + dH(v) ≤ ∆ + 2, removing edges uz ∈ E(G) and
vz′ ∈ E(H) and joining the vertices z and z′. Then K is also ∆-critical.

Problem 5.3 Suppose that Conjecture 1.2 holds for G and H, i.e., ρ(G) ≥ ∆−1+
1
n1

and ρ(H) ≥ ∆−1 + 1
n2

. Is it true that ρ(K) ≥ ∆−1 + 1
n1+n2−1? Similarly, what

happens for the analogous situation for Conjecture 1.3, i.e., the signless Laplacian
version of the problem?

We leave the above problems for further research.
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[11] P. Hansen, D. Stevanović, On bags and bugs, Discrete Appl. Math. 156 (2008)
986–997.

10



[12] A.J.W. Hilton, C. Zhao, The chromatic index of a graph whose core has maxi-
mum degree two, Discrete Math. 101 (1992) 135–147.

[13] M. Hofmeister, Spectral radius and degree sequence, Math. Nachr. 139 (1988)
37–44.

[14] Y. Hong, A bound on the spectral radius of graphs, Linear Algebra Appl. 108
(1988) 135–139.

[15] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cam-
bridge, 1985.

[16] B. Huo, S. Ji, X. Li, Y. Shi, Solution to a conjecture on the maximal energy of
bipartite bicyclic graphs, Linear Algebra Appl. 435 (2011) 804–810.

[17] B. Huo, X. Li, Y. Shi, Complete solution to a conjecture on the maximal energy
of unicyclic graphs, European J. Combin. 32 (2011) 662–673.

[18] J. Li, X. Li, Y. Shi, On the maximal energy tree with two maximum degree
vertices, Linear Algebra Appl. 435 (2011) 2272–2284.

[19] X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with
maximal energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 183–214.

[20] B. Liu, J. Shen, X. Wang, On the largest eigenvalue of non-regular graphs, J.
Combin. Theory Ser. B 97 (2007) 1010–1018.

[21] L. Miao, J. Qu, Q. Sun, On the average degree of critical graphs with maximum
degree six, Discrete Math. 311 (2011) 2574–2576.

[22] W. Ning, H. Li, M. Lu, On the signless Laplacian spectral radius of irregular
graphs, Linear Algebra Appl. 438 (2013) 2280–2288.

[23] R.C. Read, R.J. Wilson, An Atlas of Graphs, Clarendon Press, Oxford, 1998.

[24] D. Sanders, Y. Zhao, On the size of edge chromatic critical graphs, J. Combin.
Theory Ser. B 86 (2002) 408–412.

[25] L. Shi, The spectral radius of irregular graphs, Linear Algebra Appl. 431 (2009)
189–196.

[26] Z. Song, Chromatic index critical graphs of odd order with five major vertices,
J. Combin. Math. Combin. Comput. 41 (2002) 161–186.

[27] Z. Song, H.P. Yap, Chromatic index critical graphs of even order with five
major vertices, Graphs Combin. 21 (2005) 239–246.
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