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Y The topic is based on the following joint papers with my Chinese colleagues.

® “Color degree and monochromatic degree conditions for short properly colored
cycles in edge-colored graphs “ JGT 2018 (with Ruonan Li and Shinggui Zhang)

® “On sufficient conditions for rainbow cycles in edge-colored graphs” DM, accepted
(with Bo Ning, Chuandong Xu and Shenggui Zhang)

® "Decomposing edge-colored graphs under color degree constraints” CPC, accepted
(with Ruonan Li and Guanghui Wang)
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In this talk, we consider degree condition for_cycles

in edge-colored graphs. Let

$¢(G) := min {d°w | veVv(s)]

»

color degree of v; i.e., the number of colors
adjacent to v in G.
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g Notel 5(6)3 5 (G)

o §56)= 2



In this talk, we consider degree condition for cycles

in edge-colored graphs. Let

$¢(G) := min {d°w | veVv(s)]

properly coloved Cy ! %\

color degree of v; i.e., the number of colors
adjacent to v in G.

Ex. G c
’ Noted $(0)3 $(G)

o §56)= 2



In this talk, we consider degree condition for cycles

in edge-colored graphs. Let

$¢(G) := min {d°w | veVv(s)]

»

color degree of v; i.e., the number of colors
adjacent to v in G.

Ex. G c
’ Noted $(0)3 $(G)

o §56)= 2



In this talk, we consider degree condition for cycles

in edge-colored graphs. Let

$¢(G) := min {d°w | veVv(s)]

roin bow %\
triongle! Yy

color degree of v; i.e., the number of colors
adjacent to v in G.

Ex. G c
’ Noted $(0)3 $(G)

o §56)= 2



For a vertex v in an edge-colored graph G, let CN(v) be
the set of colors assigned to edges incident to v.

(U.

CN (V)= { green, ved }
Ex. G




Y Some natural questions:

What is the sharp degree conditions for the followings?

Prop. 1: If G is an edge-colored graph of order T with

8°(G) 2 Fwny, then G contains a properly colored cycle.

Prop. 2. If G is an edge-colored graph of order 1 with

8°(G) 2 dn) | then G contains a rainbow cycle.



¢ Answer for Prop.1

Prop. 1: If G is an edge-colored graph of order Y with

8°(G) 2 Fwn), then G contains a properly colored cycle.

Thi( Li,er\omg ond F, JGT 2019)

Let D be the least value oF Fin) st. Prop.1is true.

Then m+1 = D! Z i holds.



Construction of sharpness example:
Gie O—0O  Doing this woy, we Con

o Cohstruct Gl ‘Srow\ G'L
Ga -

So that %C(Gt“): i+|
ond Gi+| hoas ho PCcycle.

L (; G
Gz’ ® Note ¢ &°(Gp)=D,

D
A V(o= DL Z =+
=0 L



v¢ Partial answer for Prop. 2

Prop. 2: If G is an edge-colored graph of order Y with

8°(G) 2 dwn) , then G contains a rainbow cycle.

Th2 (Lietal. EuIC 201%)

Let D be the least value oF 8(n) sx. Prop.2 is true.
Then D < 2+ 1 holds.



Th 2 (Li et al. EudC 201%)

Let G be on edge- Colored greph of order M 75 with
c(G) = R . Then GD Yoinbow triangle or GgK%'%

Th 3 (Broersmo et al. AulC 2005)
Let G be on edge- Colored greph of order M7 4t St
|CN (wy v CN W) 2 n-| or every pair LA ‘ll e V(G).

Then GO 3 vainbow triangle or 3ro.mbom C,q.



Our results are following.
Th Y ( Ni“%t Xu, Z\aomg ond )
For kZ|, let G be an edge-Colored groph oF order m 3 loSk - 24

St ICN (W U CNW) | = m-| Sor every poir U,V € V(G).
Then G D k roainbow Cll-,

™S (NiV\Q, Xu, Zhong ond F)

Let G be an edge-Colored groph of order m » 6 Sit.
|ICN W U CNW)| = n-| Sor every pair U, € VIC) .

Then G D Y‘mnbow triongle or (>Kn

uz



Our results are following.

Th 6 (Ning, Xu, Zheng ond F )
For k7|, let G be an edge-Colored groph of ovrder m st
ICNC UCNW) | 2 5 +6%k+l Sor every pair u,v € V(G).

Then GD k ‘ber'te)t-d‘\sjoint Yoinbow cyc‘e.S.

Cor. For k2l, ¥ G is on edse-colored groph of order N
with 8°(G) 3 "3‘- +64ktl, then

G > k wertex-disjoint voinbow cycles,



Our results are following:

Th.7 (Li,Zhang ond F TGT 201%)
I'E éc(km,h) ‘l "H'lEI"I PC Cq. or C’6 n kwm

Th.8 (Li,Zhang and F JGT 2018)
I‘f Zc(‘:m h) 3 'I'hengPC Cq- n kmn

Remark. The minimum color degree conditions are sharp.




Our results are following:

Th.7 (Li,Zhang ond F TGT 201%)
I'f 3c(km,h) ‘2, ‘I’hen PC Cq. or C'6 n knm

\Cor/
FH=8-(Li,Zhang ond F JGT 2017)
g

I'E zc(km h) Bk"'henngC Cyin |<lnn

Remark. The minimum color degree conditions are sharp.




| propose the following conjecture:

Conj.
TF §°(Kmn) 2 mmﬂ then each vertex
15 contained in proper|y colored cycleS of

length 4,6,-, min { 2m,2n}, respectwely.



We have the following partial result to this conjecture.

Th.9(Li,Zhong and F JGT 2018%)
¥ §°(Kmn) 2 mmﬂ then each vertex

15 contained in a properly colored cycle of

length 4



The bound on the color degree condition is best possible.

ProF. = CAge-CO‘oHY\j Of Km,r\ s.t. éc(KMm)

= ”‘:‘*3 ond Iy e Kmn St. any properly

colored Cy does mot contoin V.

The case where m=5, n=4:

c S+ 4+3
6 (KS.’{-): T




Part Il: Decomposition results

® "Decomposing edge-colored graphs under color degree constraints” CPC, accepted
(with Ruonan Li and Guanghui Wang)



| propose the following conjecture:

Con;.
Let G be an edge-colored graph with SC(G) > atb+] .
Then G can be partitioned into 2 parts A and B s.t.

$S(GIA)) 2o ond §°(GIB]) >b.

@ ﬁ> ¥za | o
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Our main results are following.

\V}
o

SC 6(‘.

\'}

- Con,. is true for a=b=2. G

Thm. (Ruonan Li, Guanghui Wang, and F)

Let G be an edge-colored graph with 3°(G) 25,
Then G can be partitioned into 2 parts Aand B s.t.

§(60AT) > 2 and $°(G(BY) 2 2.



Our results are closely related to Bermond-Thomassen's
conjecture in digraphs.

Pbm. Determine the least value f(k) which makes the
following proposition true.

Prop. Every digraph D with  §*(D) 2 (k)
contains k vertex-disjoint dicycles.

Conj. (Bermond and Thomassen, JGT'81)

F(k)= 2k-1.

\—}—/. I:I L Known results: True for k=3.



In fact, we obtained a stronger statement. To state this,
let g(k) be the following function.

2 (k=1)

r

9(k) =14

Lmox{ 3 +1,9(k-0+3 T (k22)

Ref.

Pbm. Determine the least value f(k) which makes the
following proposition true.

+
Prop. Every digraph D with o (D) 2 $(k)
contains k vertex-disjoint dicycles.



We obtained the following theorem.

Thm 1. (Ruonan Li, Guanghui Wang and F.)

Let G be an edge-colored graph with éc (G) = 3( |<)

Then G can be partitioned into k parts A1,...,Ak s.t.

5 (GLAJ) 2 2 dor 1< 1€ k.

G
Al Aa

Ak Note: g(2) = 5.




Proof idea for Theorem 1.

In view of induction on k, we can check that proving the
case k=2 is essential.

Thm. (Ruonan Li, Guanghui Wang, and F)

Let G be an edge-colored graph with ﬁc(G) 25,
Then G can be partitioned into 2 parts A and B s.t.

§(6IA]) = 2 and $°(GIBY) 2 2.



It suffices to show that the following proposition is true.
Prop.1. If G is an edge-colored graph with § (G) > S,

then G has two vertex-disjoint subgraphs A1,A2 s.t.
C
5(A) 22 and (A2 2.

- Prop.1 implies our theorem.
') Take A and Az so thet 1AL ALl 15 mOXimum.,
Suppese G- (AwA) 2%, I§ 8°(6-(Awhl)) 22, then

LA G-A/] is a desired partition, But §(G-(AwAl)) <]
would contradict the moximality oF |AivA2l.



- Prop.1 implies our theorem.

.'.) TQLQ P\l amcl Az So that [Aiu Azl iS MOXimUuwm .
Suppese G- (AiuA) 2. TF 8°(G-(AwAL) 2 2, then

[Au G‘P\A s o desired partition, But SC(C-(ANP\-;)) |
would contradict the w\axiw\ql.'ty oF IP\tUAzl. )

5 @8,




Proof ideas:

By contradiction, let G be a counterexample of Prop.1'.

We choose such an edge-colored G so that:

(i) |G| is as small as possible, and subject to (i);

(ii) |[E(G)]| is as small as possible, and subject to (ii);

(iif) the number of colors in G is as large as possible.



By the choice of G, we see the following. For color j,
let Gj be the subgraph of G obtained from color j edges.

Claim. Any Gj forms a star. PS

“*) T4 there is 0 mono. Pt in G,
then we con delete on edge From the Pa, which

contradicts the choice oF G,

5Cc) 3§ 3C<G') > 5!

’

| ACTS
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By the choice of G, we see the following. For color j,
let Gj be the subgraph of G obtained from color j edges.

Claim. Any Gj forms a star. ®

If there are two vertex-disj. mono. Stars,
then we con recolor one of them, which contvadicts
the choice oF G. Thus, the claim werks. p

5Cc) 3§ 3C<G') > 5!

AV AL




If G contains a rainbow triangle,
we can easily find a desired partition.

Thus we may assume that
G has no rainbow triangle.

We also use some inductive argument
such as vertex deletions and edge contractions.

Utilizing these techniques, we can get
a contradiction..



Returning to the statement of Thm.1, © 3°(G) 2 g(k)”,

let's observe how digraph things are involved in our Pbm.

2 (k=1)

r

9(k) =14

Lmox{ 3 +1,9(k-0+3 ¥ (k22)

Ref.

Pbm. Determine the least value f(k) which makes the
following proposition true.

+
Prop. Every digraph D with o (D) 2 $(k)
contains k vertex-disjoint dicycles.



Although the following argument is slightly different from
the actual proof of our theorem, it'd be good to understand
the proof approach (roughly).

Recall the claim that any mono. component is a star.

From a mono. star, we can give an orientation on the edges
in the following way:




Doing this way, we can construct a digraph D from G.

In view of CIm, we see that
any dicycle in D forms a properly colored cycle in G.




Doing this way, we can construct a digraph D from G.

In view of CIm, we see that
any dicycle in D forms a properly colored cycle in G.

Thus, if $57(D) = §(k).

P then we can find k vertex-dis;j.
properly colored cycles, and
hence we get a desired partition!



- Con,. is true for b=2 in edge-colored complete bip. graphs.
Cor. of Th® in Part ]!

Thm 2. (Ruonan Li, Shenggui Zhang, and F)

Let G be an edge-colored complete bip. graph with

$(6) 2 a+9.

Then G can be partitioned into 2 parts A and B s.t.
$(GIA1) >  ond §°(GIBI) > 2.



We also showed that our problem for the case b=2
has close links with Bermond-Thomassen's conjecture.

Pbm. Determine the least value f(k) which makes the
following proposition true.

+
Prop. Every digraph D with 5 (D) 7 F(k)
contains k vertex-disjoint dicycles.

Conj. (Bermond and Thomassen, JGT'81)

F(k)= 2k-1.

~ 3 N>




Pbm. Determine the least value f(k) which makes the
following proposition true.

Prop. Every digraph D with  §*(D) 2 f(k)
contains k vertex-disjoint dicycles.

Conj. (Bermond and Thomassen, JGT'81)

F(k)= 2k-1.

Known results.

- true for k=1,2,3. (k=1,2: Thomassen '83; k=3: Lichiadopol et al. '09)
_ f(k)= 64k (Alon, JCTB'97)



Thm 3. (Ruonan Li, Guanghui Wang, and F)

If our conjecture is true for b=2 then f(k) = 3k-1 .

Conj. (Bermond and Thomassen, JGT'81)
F(k)= 2k-1.

Known results.

- true for k=1,2,3.
- f(k)= 64k (Alon, JCTB'97)



Further results.
Thm 4. (Ruonan Li, Guanghui Wang and F)
Let G be an edge-colored complete graph with

§°(6) 2 n+3,

Then G can be partitioned into 2 parts A and B s.t.
$‘(GLA) > & and $°(GIB]) 2 2.



Further results.
Thm 5. ( Ruonan Li, Guanghui Wang, and F)

Let G be an edge-colored graph of order n with
a3b>land §°(6) 2 20an +4(a-1).

Then G can be partitioned into 2 parts A and B s.t.
$(GIAY) 2o and &°(GIB]) 2b.



