How to make a connected graph properly connected

Shinya Fujita

Yokohama City University

Definitions:

An edge-colored graph is properly connected

$$\Leftrightarrow$$
 For any $u,v \in V(G)$, \exists properly colored path joining them

GOOO

color degree of v; i.e., the number of colors adjacent to v in G.

$$G(G) = 2$$

Is this properly connected ??

Is this properly connected ??

Is this properly connected ??

In this talk, we consider edge-colored connected graphs.

The proper connection number of G means

Note: If G is a tree, then $pc(G) \gg \Delta(G)$

Known results:

Th. 1 (Magnant & F 2011)

If $\delta'(G) \geqslant \frac{|V(G)|}{2}$ then G is properly connected.

Th.2 (Borozan et al. 2012)

If G is 2-connected, then ⊅c(G) ≤ 3.

Th.3 (Huang et al. 2017)

If G is 2-conn. and diam(G) ≤ 3, then pc(G) ≤ 2.

Th. 4 (Brause et al. 2017)

If G is 2-conn. and $\delta(G) > \max\{2, \frac{|G|+8}{20}\}$, then $PC(G) \leq 2$.

Known results:
Th.1 (Magne

Th. 1 (Magnant & F 2011)

If $\delta'(G) \geqslant \frac{|V(G)|}{2}$ then G is properly connected.

Th.2 (Borozan et al. 2012)

If G is 2-connected, then pc(G) ≤ 3.

Th.3 (Huang et al. 2017)

If G is 2-conn. and diam(G) ≤ 3, then pc(G) ≤ 2.

Th. 4 (Brause et al. 2017)

If G is 2-conn. and $\delta(G) > \max\{2, \frac{|G|+8}{20}\}$, then $pc(G) \leq 2$.

I feel that the following is a challenging problem.

Pbm: Characterize 2-conn. graphs G
s.t.
$$pc(G) = 3$$
.

Th.5 (Brause et al. 2017)

For every $d \ge 3$, there exists a 2-conn. graph G s.t. $\delta(G) = d$, |G| = 42d and pc(G) = 3.

Xueliang Li - Colton Magnant Zhongmei Qin

Properly Colored Connectivity of Graphs

In this talk, I would like to consider how to make a graph properly connected.

Let G be a monochromatic graph with color 1.

Easy to check:

$$pc_{opt}(K_{I,m}) = 2m-2$$
, $pc_{opt}(C_n) = L \frac{h-1}{2} + 1$

An edge e=xy is $g \circ d \Leftrightarrow$

We can find a partition $V(G) - (N(x) \cap N(y)) = X \cup Y$ $S.t. X \subset N(x)$ and $Y \subset N(y)$, and G[X] and G[Y] are cliques.

Th. 6 (F)

A conn. graph G has $\neq copt(G) \leq 2$ if and only if G contains a good edge.

An edge e=xy is $g \circ d \Leftrightarrow$

We can find a partition $V(G) - (N(x) \cap N(y)) = X \cup Y$ $S.t. X \subset N(x) \text{ and } Y \subset N(y),$ And G[X] and G[Y] are cliques.

Th. 6 (F)

A conn. graph G has $\neq copt(G) \leq 2$ if and only if G contains a good edge.

Th.7 (F) If $d(G) \le 2$ then $pc_{opt}(G) \le 3$. Th. 8 (F) Let m > n > 2 and m+n > 9. Pc opt (Km,n) = 4 for n=2,3; and, PCOPt (Km,n) = 5 for n = 4. Size of a max matching Th.9 (F)

If G is a tree, then $pcopt(G) = |G| - 2 - \alpha'(G) + \Delta(G)$.

Th. 10(F)
If Gis 2-conn. P4-free with 161≥9, then pcopt(G) ≤ 5.

Some observations

Prop. 1: If G contains a complete bip, graph H s.t.

(i) |G|=|H| and (ii) each partite set contains an edge, then $pcopt(G) \leq 3$.

Cor. If G is a complete multipartite graph $K_{n_1,...,n_q}$ s.t. 1>3 and $2\leq n_1\leq ...\leq n_q$, then $pcopt(G)\leq 3$.

Some observations

@ Upper bound on pcopt (Km,n), where m>n>2 and m+n 39 Case 1: 2 < n < 3

Extension

An edge colored graph G is properly k-connected if for any pair of vertices, there exist k internally disjoint properly connected paths joining them.

We can consider the following function of a graph.

Extension

Def: A mono. conn. graph G is (p,q)-feasible
if we can make G properly connected by recoloring
p edges with q new colors.

In particular, let's call (p,q)-optimal feasible if

$$P+9 = PC_{OPt}(G)$$

Remark: If G is (p,q)-feasible, then ?>q>pc(G).

Th. 7'(F)

Any graph G s.t. d(G) ≤ 2 is (2,1)-feasible.

Th.8'(F)
For Kmn 4

For Km,n with $m \ge n \ge 2$ and $m + n \ge 9$, if n = 2,3, then Km,n is (2,2)-Optimal feasible; and if $n \ge 4$, then Km,n is (3,2)-Optimal feasible.

Th.9'(F)

If Gis a tree, then

G is $(n-1-a'(G), \Delta(G)-1)$ -optimal feasible.