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Consider ℤ30 

We know that 2 ∙ 3 ∙ 5 = 0  
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Graph structures 

Hypergraph 𝓗(𝑽, 𝓔) 𝓗

 𝑉 or 𝑉(ℋ) is a nonempty finite set of vertices or vertex set 
 

 ℰ or ℰ(ℋ) is a family of subsets of 𝑉, called set of (hyper)edges 
or edge set 

 If each edge of ℋ has size 𝑙, we call ℋ an 𝑙-uniform hypergraph. 
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length of the path 𝑃. 

 The distance of distinct vertices 𝑥 and 𝑦, denoted by 𝑑(𝑥,𝑦), is 
the minimum length of all paths that connect 𝑥 and 𝑦. 
 

 The diameter of ℋ 𝑉, ℰ , denoted by 𝑑 ℋ , is defined as 
𝑑 ℋ = 𝑚𝑎𝑥 𝑑 𝑥, 𝑦 |𝑥, 𝑦 ∈ 𝑉, 𝑥 ≠ 𝑦 . 
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 Principal ideal domain (PID) 
 There exist at least 𝑘 prime elements 
𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 

 Find an appropriate ideal so that constructed 𝑘-
zero-divisor hypergraph has the desired properties 

Example: ℤ𝑛 ≅ ℤ 𝑛ℤ  

Ring 𝑅

Commutative Ring 𝑹 𝑰  

Objective 
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Consider ℤ27 ≅ ℤ 27ℤ ≅
ℤ
33ℤ  

A vertex set 𝑍 ℤ27, 3 = 3 , 6 , 12, 15, 21, 24  

3  6  

12 15 

21 

24 

Example of complete 𝟑-zero-divisor hypergraph of ring 𝑹 
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Only one edge 
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Hypergraph 
Appropriate 

Ideal 
Vertex Set Diameter 

Minimum 
length of 
all cycles 

Complete 𝑘-
zero-divisor 
hypergraph 

𝑅𝑝𝑘 Z 𝑅
𝑅𝑝𝑘 
, 𝑘 =
𝑅𝑝
𝑅𝑝𝑘 
−
𝑅𝑝2

𝑅𝑝𝑘
  1 0,2, or 3 
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 4 if 𝑘 = 2 and 𝑍 𝑅 𝑅𝛾 , 2 ≥ 3 (each partite set has more 
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Hypergraph 
Appropriate 

Ideal 
Vertex Set 

(𝛾 = 𝑝1𝑝2𝑝3⋯𝑝𝑘) 
Diameter 

Minimum 
length of 
all cycles 

Complete 𝑘-
partite 𝑘-zero-

divisor 
hypergraph 

𝑅𝑝1𝑝2𝑝3⋯𝑝𝑘 

𝑉𝑖 =
𝑅𝑝𝑖
𝑅𝛾 − 

𝑅𝑝𝑗
𝑅𝛾 

𝑗≠𝑖

 

 𝑉𝑖

𝑘

𝑖=1
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𝛼𝑘  Condition: 𝑅 has at least 
𝑘 prime elements  
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Conclusion table 

Hypergraph 
Appropriate 

Ideal 

Vertex Set 

(𝜎 =  𝛼𝑚

𝑘

𝑚=1

, 

𝜋 = 𝑝1
𝛼1𝑝2
𝛼2𝑝3
𝛼3⋯𝑝𝑘

𝛼𝑘)  

 

Diameter 
Minimum 
length of 
all cycles 

𝑘-partite 𝜎-
zero-divisor 
hypergraph 

𝑅𝑝1
𝛼1𝑝2
𝛼2𝑝3
𝛼3⋯𝑝𝑘

𝛼𝑘 

𝑉𝑖 =
𝑅𝑝𝑖
𝑅𝜋 −  

𝑅𝑝𝑗
𝑅𝜋 𝑗≠𝑖  if 𝛼𝑖 = 1 

𝑉𝑖 =
𝑅𝑝𝑖
𝑅𝜋 −

𝑅𝑝𝑖
2

𝑅𝜋
 ∪  

𝑅𝑝𝑗
𝑅𝜋 𝑗≠𝑖  

if 𝛼𝑖 ≥ 2 

 𝑉𝑖

𝑘

𝑖=1

= 𝑍 𝑅 𝑅𝜋 , 𝜎  

2 0,2, or 4 
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