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Algebraic structures

A nonzero nonunit element z4 is said to be
k-zero-divisor
if there exist k — 1 distinct nonunit elements

Zo,Z3,Z4, ..., Z), differ from z; such that

> Z1Z,Z3 - Z; = 0
> the products of elements of any k — 1 subset of
{z{, 25,23, ..., 2}, } are nonzero

Chelvam et.al.
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Example of k-zero-divisor

[ Consider Zizq j

Weknovvthati'g'g:G

We obtain that 2 is a 3-zero-divisor
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Graph structures
Hypergraph H(V,E) or H

» Vor V(H) is a nonempty finite set of vertices or vertex set

» & or E(H) is a family of subsets of V, called set of (hyper)edges

or edge set

» If each edge of H has size I, we call H an l-uniform hypergraph.

Verrall
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Complete k-uniform hypergraph on n vertices

» H has all k-subsets of the n-set of vertices as edge

Complete 3-uniform hypergraph on 4 vertices {1, 2, 3, 4}
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Complete k-uniform hypergraph on n vertices

» H has all k-subsets of the n-set of vertices as edge

Complete 3-uniform hypergraph on 4 vertices {1, 2, 3, 4}
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> Vertex set V partitioned into k subsets V;,V,, V3, ..., V}
> Edge set € = {{vl,vz,vg, UMY €V foralll < j < k}

> Complete if V; = {vjl,vjz,v]?‘, ...,vj|Vf|} forall1 <j < kand

E = {{vlil,vziz,v:,f?’, v,i"} |vjlj €EViforalll<j<kand1<i < |VJ|}

FEIETSD

3-Partite 3-uniform hypergraph | Kuhland Schroeder







k-Partite o-uniform hypergraph where o > k

Jirimutu and Wang



k-Partite o-uniform hypergraph where o > k

> Vertex set V partitioned into k subsets V;, V5, Vs, ..., V5
» Eisanedeeif |[E| =cand |[ENV;| <oforalll <i<k.

Jirimutu and Wang



k-Partite o-uniform hypergraph where o > k

> Vertex set V partitioned into k subsets V;, V5, Vs, ..., V5
» Eisanedgeif |[E|=cand |[ENV;| <oforalll1<i<k.

> Complete if € = {E : |E| = 0 and IENV)| <oforall <i < k}

Jirimutu and Wang



k-Partite o-uniform hypergraph where o > k

> Vertex set V partitioned into k subsets V;, V5, Vs, ..., V5
» Eisanedeeif |[E| =cand |[ENV;| <oforalll <i<k.

> Complete if € = {E : |E| = 0 and IENV)| <oforall <i < k}

Jirimutu and Wang
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Path and Diameter of hypergraph H

> A path P from x; to x5,1 is a vertex-edge alternative sequence
xX1,Eq{,x2,E,, ..., X5, Eq, Xs11 such that {x;, x;,1} € E; for all
l1<i<sandx; #xjE; #E;j withi =+ jand s is called the
length of the path P.

» The distance of distinct vertices x and y, denoted by dx,y), is

the minimum length of all paths that connect x and y.

» The diameter of H (V, £), denoted by d(H), is defined as
d(H) = max{d(x,y)|x,y €V,x # y}.

Ye
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Example of path and diameter

[ Path from 1 to 6 } ( 1,e,3,f,6

d(1,6) =2

[ Path from 4 to 6 } 4,9,1,e,3,f,6
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Example of path and diameter

[Pathfromlto6] ! 1,e,3,f,6 ]
- d(1,6) = 2
1,e,5f,6
- ’ Consider all d(x, y)
Path from 4 to 6 } 4,9,1,e,3,f,6
[ - i d ’ 6(4,6) =13 J
4,9.1,e,5f6 | V-
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Example of path and diameter

[Pathfromlto6] 1,e,3,f,6
- d(1,6) =2

; , d(H) =3
[ Path from 4 to 6 } 4,9,1,e,3,f,6
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Cycle of hypergraph H

> Let s = 2 be an integer

> An S-cycle is an alternating sequence,
C=x1,E{,x9,E,, .. x5 E of distinct vertices xq, X5, X3, ..., Xg
and distinct edees E4, E,, E3, ..., E such that x{, x; € E and
X;,Xiy1 EE;foral 1 <i <s—1and S is called the length of

cycle C.

Ye

13



Cycle of hypergraph H

> Let s = 2 be an integer

> An S-cycle is an alternating sequence,
C=x1,E{,x9,E,, .. x5 E of distinct vertices xq, X5, X3, ..., Xg
and distinct edees E4, E,, E3, ..., E such that x{, x; € E and
X;,Xiy1 EE;foral 1 <i <s—1and S is called the length of

cycle C.

> If hypergraph has no cycle, such hypergraph has 0-cycle or a
cycle of length O.

Ye
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C; =5¢3,f A cycle of length 2

[ C, =4,h,6,f,3,e,1,9 ]
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Example of cycle

C; =5¢3,f A cycle of length 2

[ C, =4,h,6,f,3,e,1,g ] [ A cycle of length 4 ]
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k-Zero-divisor hypergraphs of a commutative ring R

» V =Z(R, k), set of all k-Zero-Divisors

» FE={aqa,as..,a,}€EE

> aa,0a3 - a; =0
> the products of elements of any k — 1 subsets of
{a{,a,,as, ...,a;} are nonzero

» e see that k-Zero-Divisor Hypergraphs is k-uniform hypergraph

Chelvam et. al.
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Example of 3-zero-divisor hypergraphs of ZBO

e = {z, §, g}

€y = {2, g, g}
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Complete k-partite
k-zero-divisor hypergraph
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Complete k-partite
k-zero-divisor hypergraph




Find diameter

Complete k-partite and minimum

k-zero-divisor hypergraph

length of all

cycles
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» Principal ideal domain (PID)

» There exist at least k prime elements

P1,P2,P3, -+, Pk

» Finiteness of a rng R/I Commutative Ring R/I

Example: Z, = Z/nZ

Objective

» Find an appropriate ideal so that constructed k-

zero-divisor hypergraph has the desired properties
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Complete@zero—divisor hypergraph of ring R

‘ Commutative ring: R/Rpk

Appropriate ideal: R

¥

Conditions: ‘Rp/Rpk — RpZ/Rpk‘ >k

Complete k-zero-divisor hypergraph
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{ Consider Zip7 = Z/27Z = Z/33Z ]

A vertex set Z(Z,7,3) = {3,6,12,15,21, 24}
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Z (R k)| 2 ke +1

c=1¢2,f
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The minimum length of all cycles
> 0if ‘Z (R/R k,k)‘ =k Only one edge

» 2ifk >3and |Z R/Rkk >k+1

L B c=1e2f

> 3itk=2and |Z(F/p,2,2)| 2 3
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The minimum length of all cycles

> 0if ‘Z (R/Rpk,k)‘ =k Only one edge
> 21tk 23and |Z(R/, k)| 2 k+1
)
c=1¢2,f
/

> 3ifk = 2 and ‘Z (R/sz , 2)‘ > 3 [ Same idea as complete graph ]
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Conclusion table

Minimum
Appropriate
Hypergraph deal Vertex Set Diameter | length of
ea

all cycles

Complete k-

i k R _Rp/ _Rp?
zero-divisor Rp z( /Rpk’k) = /Rpk /Rpk 1 0,2,0r3
hypergraph
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24
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k prime elements
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Complete@partite@zero—divisor hypergraph of ring R

24

Commutative ring: R/Rplpng---pk Condition: R has at least

k prime elements

Appropriate ideal: R[lezp3 pk|

\ 4

LetY = P1DP2D3 """ Pk




Complete@partite@zero—divisor hypergraph of ring R

Commutative ring: R/Rplpng---pk Condition: R has at least

k prime elements
Appropriate ideal: Rp;pap3 -+ Pyl

‘ LetY = D1DP2P3 *** Pk

: Rp
Each partite set V;: R Ry — Ujii p]/Ry

k
U Vi — Z(R/Ry'k)
i=1

24



Complete@partite@zero—divisor hypergraph of ring R

24

Commutative ring: R/Rp1p2p3---pk

Appropriate ideal: R@1p2p3 pk|

Condition: R has at least

k prime elements

‘ LetY = D1DP2P3 *** Pk

: Rp
Each partite set V;: R Ry — Ujii p]/Ry

k
U V, = Z(R/n, )
i=1

\ 4

Complete k-partite k-zero-divisor hypergraph
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Example of complete 3-partite 3-zero-divisor hypergraph of ring R

Vs

: ~ 7 ~ 7
Consider Zgo — /3OZ — /(2-3-5)Z ]

U

[ 3]
[ I

o

g
4

o
il 0

| V, ={2,4,8,14,16,22,26,28} |

25




Example of complete 3-partite 3-zero-divisor hypergraph of ring R

Vs
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Consider Z30 — /3OZ — /(2-3-5)Z J

U

& é -
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Example of complete 3-partite 3-zero-divisor hypergraph of ring R

(

\_

: ~ 7 ~ 7
Consider Zgo — /302 — /(2-3-5)Z J
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Diameter of complete k-partite k-zero-divisor hypergraph of ring R

> Diameter is 2
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Diameter of complete k-partite k-zero-divisor hypergraph of ring R

‘ > Diameter is 2 ‘
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ol §
o 0

26






The minimum length of all cycles

27



The minimum length of all cycles

> 0if|Z(R/ry, k)| =k

27



The minimum length of all cycles

» 0if |Z(R/Ry,k)| =k Only one edge

27



The minimum length of all cycles

» 0if |Z(R/Ry,k)| =k Only one edge

> 2ifk =3 and |Z(R/py k)| = k + 1

27



The minimum length of all cycles

» 0if |Z(R/Ry,k)| =k Only one edge

> 2ifk =3 and |Z(R/py k)| = k + 1

T~ — =
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The minimum length of all cycles

» 0ifk =2 and |Z(R/Ry, 2)| = 3 (one of partite sets has only

one element)
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» 0ifk =2 and |Z(R/Ry, 2)| = 3 (one of partite sets has only

one element)
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The minimum length of all cycles

» 0ifk=2and |Z(R/Ry, 2)| = 3 (one of partite sets has only

one element)

)

S

.

—

> 4ifk = 2and |Z(R/Ry, 2)| = 3 (each partite set has more

than one element)
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The minimum length of all cycles

» 0ifk=2and |Z(R/Ry, 2)| = 3 (one of partite sets has only

one element)

)

L=

.

—

> 4ifk = 2and |Z(R/Ry, 2)| = 3 (each partite set has more

than one element)

[ Same idea as complete bipartite graph ]
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Conclusion table

Appropriate
Hypergraph
|deal
Complete k-
partite k-zero-
- Rp1p2p3 - Pk
divisor
hypergraph

29

Vertex Set
(¥ = p1D2P3 " Pk)

Rp; Rpj
Vi = pl/RV_U /Ry

J#L

UVi :Z(R/Ry’k)

Diameter

2

Minimum
length of

all cycles

0,2, or 4
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k-partite 0-zero-divisor hypergraph of ring R where 0 > k

How to construct k-partite o-zero-divisor hypergraph

Construct complete k-
Construct complete [-zero-

partite k-zero-divisor

divisor hypergraph
hypergraph
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hypergraph

31



3-partite 4-zero-divisor hypergraph of ring R

complete 3-partite 3-zero-divisor

hypergraph

Rp1p,p3
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3-partite 4-zero-divisor hypergraph of ring R

complete 3—partite 3-zero-divisor complete 2-zero-divisor
hypergraph hypergraph

Rp1p,p3




3-partite 4-zero-divisor hypergraph of ring R

complete 2-zero-divisor
hypergraph
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3-partite 4-zero-divisor hypergraph of ring R

complete 2-zero-divisor
hypergraph

complete 3—partite 3-zero-divisor

hypergraph

Rp1p,p3

Rp




3-partite 4-zero-divisor hypergraph of ring R

complete 3—partite 3-zero-divisor

complete 2-zero-divisor
hypergraph

hypergraph
Rp1D2P3 Rp’
2
Rpip2Dp3

Ring Z60 = Z/(22.3.5)Z
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3-partite 4-zero-divisor hypergraph of ring R

complete 2-zero-divisor

hypergraph

complete 3-partite 3-zero-divisor

hypergraph

Rp1p,p3

Rpip,p3
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3-partite 4-zero-divisor hypergraph of ring R

complete 3-partite 3-zero-divisor

hypergraph
Rpi1p,p3
. 7 — 5
Ring Zeo = /(22357 ||| & ‘ ‘ & ‘
o bt
14 9
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3-partite 4-zero-divisor hypergraph of ring R

complete 3-partite 3-zero-divisor complete 2-zero-divisor
hypergraph hypergraph

Rp1p,p3

Ring Z60 = Z/(22.3.5)Z

[ 3%
[ 5]

5l 0
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3-partite 4-zero-divisor hypergraph of ring R

complete 2-zero-divisor

hypergraph

complete 3-partite 3-zero-divisor

hypergraph

Rp1p,p3

Ring Zgy = Z/(22.3.5)Z
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k—partite O-zero-divisor hypergraph of ring R where 0 = k

Commutative ring: R/R ay_az az Condition: R has at least
b, P, D3 pk .
k prime elements

Ay A3

Appropriate ideal: Rpy *py *Dg ...p;:k
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k prime elements



@partite @zero—divisor hypergraph of ring R where 0 = k

32

Commutative ring: R/R ay_az az Condition: R has at least
b, P, D3 pk .
k prime elements

Appropriate ideal: fpflpg‘ngs’ p;:k ]

— L, ay (A3 Ak
‘ LetTT =Py Py P3Pk




@partite @zero—divisor hypergraph of ring R where 0 = k

k . .
Commutative ring: R/R ay_ ap a3 O Condition: R has at least
o = Z aOm pl pz p3 pk

k prime elements

Appropriate ideal: fpflpgzp? ng ]

— L, ay (A3 Ak
‘ LetTT =Py Py P3Pk

Fach partite set I/
Rp; Rp; : .
> ' Rt U]il J/RT[ if C(l — 1

- Rp? Rp; .
> P Rn_( pl/chUUj:ti p]/RTc) if o = 2

UVi =2(R/py.0)

32



@partite @zero—divisor hypergraph of ring R where 0 = k

k . .
Commutative ring: R/R ay_az az Condition: R has at least
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Example of 3-partite 4-zero-divisor hypergraph of ring R

(

: ~ 7 ~ L
Consider Z60 = /6OZ — /(22-3-5)Z J

\_

A vertex set

Vs = {5,25,35,55}
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The minimum length of all cycles

» 2ifk =2 and |Z(R/Rn-,a1 +a2)| = aq +a2 + 1 and
|Vi|] = 2forall 1 < i < 2andthereexists 1 < i < 2 such
that a; = 2

c=1,e2,f

» 4ifk =2 and |Z(R/Rn-,a1+a2)| = a1+a2+1and
Vi| = 2witha; = 1foralll <i <2

Same idea as complete bipartite graph
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Two players

[ Rules of the game played on hypergraphs ]

1. The cop choose a beginning vertex and then the robber

choose a beginning vertex

2. In each round, they take alternatively moving from their present
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X or staying put.
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