Connected subgraphs in edge-coloured graphs

Henry Liu1
Based on a joint survey with Shinya Fujita2 and Colton Magnant3

1New University Lisbon, Portugal
2Yokohama City University, Japan
3Georgia Southern University, USA

Discrete Mathematics Seminar, Simon Fraser University
10 March 2015
Folkloric Observation (Erdős and Rado)

A graph is either connected, or its complement is connected.
Folkloric Observation (Erdős and Rado)

A graph is either connected, or its complement is connected. Equivalently, in any 2-colouring of the edges of a complete graph, there exists a monochromatic connected spanning subgraph (or, a monochromatic spanning tree).
Folkloric Observation (Erdős and Rado)

A graph is either connected, or its complement is connected. Equivalently, in any 2-colouring of the edges of a complete graph, there exists a monochromatic connected spanning subgraph (or, a monochromatic spanning tree).

What happens when we use \(r \geq 2 \) colours?
Folkloric Observation (Erdős and Rado)

A graph is either connected, or its complement is connected. Equivalently, in any 2-colouring of the edges of a complete graph, there exists a monochromatic connected spanning subgraph (or, a monochromatic spanning tree).

What happens when we use \(r \geq 2 \) colours? Let \(m(n, r) \) be the maximum integer \(m \) such that, whenever we have an \(r \)-colouring of \(K_n \), there exists a monochromatic connected subgraph on at least \(m \) vertices.
Folkloric Observation (Erdős and Rado)

A graph is either connected, or its complement is connected. Equivalently, in any 2-colouring of the edges of a complete graph, there exists a monochromatic connected spanning subgraph (or, a monochromatic spanning tree).

What happens when we use $r \geq 2$ colours? Let $m(n, r)$ be the maximum integer m such that, whenever we have an r-colouring of K_n, there exists a monochromatic connected subgraph on at least m vertices. Thus, $m(n, 2) = n$.
Upper bound:
Upper bound:
Affine plane $AG(q)$ over \mathbb{F}_q, where q is a prime power. E.g. $AG(2)$:
Upper bound:
Affine plane $AG(q)$ over \mathbb{F}_q, where q is a prime power. e.g. $AG(2)$:
Upper bound:
Affine plane $AG(q)$ over \mathbb{F}_q, where q is a prime power. e.g. $AG(2)$:

- Parallel lines classes are $L_\infty = \{x = c : c \in \mathbb{F}_q\}$, and $L_m = \{y = mx + c : c \in \mathbb{F}_q\}$ for $m \in \mathbb{F}_q$.

\[
\begin{array}{c}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\line & \line & \line & \line & \line & \line \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\line & \line & \line & \line & \line & \line \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\line & \line & \line & \line & \line & \line \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\line & \line & \line & \line & \line & \line \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\line & \line & \line & \line & \line & \line \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]
Upper bound:
Affine plane $AG(q)$ over \mathbb{F}_q, where q is a prime power. e.g. $AG(2)$:

- Parallel lines classes are $L_\infty = \{x = c : c \in \mathbb{F}_q\}$, and $L_m = \{y = mx + c : c \in \mathbb{F}_q\}$ for $m \in \mathbb{F}_q$.
- There are q^2 points, and each line contains q points.
Upper bound:
Affine plane $AG(q)$ over \mathbb{F}_q, where q is a prime power. e.g. $AG(2)$:

- Parallel lines classes are $L_\infty = \{x = c : c \in \mathbb{F}_q\}$, and $L_m = \{y = mx + c : c \in \mathbb{F}_q\}$ for $m \in \mathbb{F}_q$.
- There are q^2 points, and each line contains q points.
- Implies that, if $r - 1$ is a prime power, then there is an r-colouring of $K_{(r-1)^2}$ such that the largest monochromatic connected subgraph has $r - 1$ vertices.
If $r - 1$ is a prime power, take a blow-up of $AG(r - 1)$ to K_n.

E.g. $r = 3$:

\[\left\lceil n \left(r - 1 \right)^2 \right\rceil \text{ or } \left\lfloor n \left(r - 1 \right)^2 \right\rfloor \]

The largest monochromatic subgraph has at most $(r - 1) \left\lceil n \left(r - 1 \right)^2 \right\rceil < n r - 1 + r$ vertices, i.e. $m(n, r) < n r - 1 + r$.

Henry Liu
If \(r - 1 \) is a prime power, take a blow-up of \(AG(r - 1) \) to \(K_n \).
e.g. \(r = 3 \):

\[
\left\lceil \frac{n}{(r-1)^2} \right\rceil \quad \text{or} \quad \left\lfloor \frac{n}{(r-1)^2} \right\rfloor
\]
If $r - 1$ is a prime power, take a blow-up of $AG(r - 1)$ to K_n.
e.g. $r = 3$:

Largest monochromatic subgraph has at most

$$\left(r - 1 \right) \left\lfloor \frac{n}{(r - 1)^2} \right\rfloor < \frac{n}{r - 1} + r$$

vertices, i.e. $m(n, r) < \frac{n}{r - 1} + r$.

Lower bound:
Lower bound:

Theorem 1 (Gyárfás 1977; Füredi 1981)

For \(r \geq 2 \) *and any* r-coloring of \(K_n \), *there is a monochromatic connected subgraph on at least* \(\frac{n}{r-1} \) *vertices.*
Lower bound:

Theorem 1 (Gyárfás 1977; Füredi 1981)

For $r \geq 2$ *and any* r-*colouring of* K_n, *there is a monochromatic connected subgraph on at least* $\frac{n}{r-1}$ *vertices.*

Hence if $r - 1$ is a prime power, then $m(n, r) \approx \frac{n}{r-1}$ (if n is large).
Lower bound:

Theorem 1 (Gyárfás 1977; Füredi 1981)

For $r \geq 2$ *and any* r-*colouring of* K_n, *there is a monochromatic connected subgraph on at least* $\frac{n}{r-1}$ *vertices.*

Hence if $r - 1$ is a prime power, then $m(n, r) \approx \frac{n}{r-1}$ (if n is large).

Theorem 1 follows from:

Lemma 2 (Mubayi 2002; L., Morris, Prince 2004)

For $r \geq 2$ *and any* r-*colouring of* $K_{m,n}$, *there is a monochromatic double star on at least* $m + n r$ *vertices.*

A double star is a graph obtained by taking two vertex-disjoint stars and connecting their centres by an edge.

Gyárfás had proved Lemma 2 with "tree" in place of "double star."
Lower bound:

Theorem 1 (Gyárfás 1977; Füredi 1981)

For \(r \geq 2 \) and any \(r \)-colouring of \(K_n \), there is a monochromatic connected subgraph on at least \(\frac{n}{r-1} \) vertices.

Hence if \(r - 1 \) is a prime power, then \(m(n, r) \approx \frac{n}{r-1} \) (if \(n \) is large).

Theorem 1 follows from:

Lemma 2 (Mubayi 2002; L., Morris, Prince 2004)

For \(r \geq 2 \) and any \(r \)-colouring of \(K_{m,n} \), there is a monochromatic double star on at least \(\frac{m+n}{r} \) vertices.
Lower bound:

Theorem 1 (Gyárfás 1977; Füredi 1981)

For \(r \geq 2 \) and any \(r \)-colouring of \(K_n \), there is a monochromatic connected subgraph on at least \(\frac{n}{r-1} \) vertices.

Hence if \(r - 1 \) is a prime power, then \(m(n, r) \approx \frac{n}{r-1} \) (if \(n \) is large).

Theorem 1 follows from:

Lemma 2 (Mubayi 2002; L., Morris, Prince 2004)

For \(r \geq 2 \) and any \(r \)-colouring of \(K_{m,n} \), there is a monochromatic double star on at least \(\frac{m+n}{r} \) vertices.

A **double star** is a graph obtained by taking two vertex-disjoint stars and connecting their centres by an edge.
Lower bound:

Theorem 1 (Gyárfás 1977; Füredi 1981)

For $r \geq 2$ and any r-colouring of K_n, there is a monochromatic connected subgraph on at least $\frac{n}{r-1}$ vertices.

Hence if $r - 1$ is a prime power, then $m(n, r) \approx \frac{n}{r-1} \ (\text{if } n \text{ is large}).$

Theorem 1 follows from:

Lemma 2 (Mubayi 2002; L., Morris, Prince 2004)

For $r \geq 2$ and any r-colouring of $K_{m,n}$, there is a monochromatic double star on at least $\frac{m+n}{r}$ vertices.

A **double star** is a graph obtained by taking two vertex-disjoint stars and connecting their centres by an edge. Gyárfás had proved Lemma 2 with “tree” in place of “double star”.
Proof of Theorem 1 (assuming Lemma 2).

Take an r-colouring of K_n.

Let U = vertex set of a monochromatic component. $|U| < n \Rightarrow$ complete bipartite graph with classes U and V ($K_n \setminus U$) is $(r - 1)$-coloured.

Lemma 2 \Rightarrow there is a monochromatic tree on at least $n r - 1$ vertices. □

Proof of Lemma 2.

Take an r-colouring of K_m, n. Let H = bipartite subgraph with most frequent colour. For $xy \in E(H)$, let $Z(xy) = d(x) + d(y)$.

$E Z = 1 e(H) \sum_{xy \in E(H)} (d(x) + d(y)) = 1 e(H) \sum_v d(v) \geq 1 e(H) (1 m + 1 n) e(H) \geq m + n r$. □
Proof of Theorem 1 (assuming Lemma 2).
Take an \(r \)-colouring of \(K_n \). Let \(U = \) vertex set of a monochromatic component.
Proof of Theorem 1 (assuming Lemma 2).

Take an r-colouring of K_n. Let U = vertex set of a monochromatic component. $|U| < n \Rightarrow$ complete bipartite graph with classes U and $V(K_n) \setminus U$ is $(r - 1)$-coloured.
Proof of Theorem 1 (assuming Lemma 2).

Take an r-colouring of K_n. Let $U =$ vertex set of a monochromatic component. $|U| < n \Rightarrow$ complete bipartite graph with classes U and $V(K_n) \setminus U$ is $(r - 1)$-coloured. Lemma 2 \Rightarrow there is a monochromatic tree on at least $\frac{n}{r-1}$ vertices. \qed
Proof of Theorem 1 (assuming Lemma 2).

Take an \(r \)-colouring of \(K_n \). Let \(U \) = vertex set of a monochromatic component. \(|U| < n \Rightarrow \) complete bipartite graph with classes \(U \) and \(V(K_n) \setminus U \) is \((r - 1)\)-coloured. Lemma 2 \(\Rightarrow \) there is a monochromatic tree on at least \(\frac{n}{r-1} \) vertices. \(\square \)

Proof of Lemma 2.

Take an \(r \)-colouring of \(K_{m,n} \).
Proof of Theorem 1 (assuming Lemma 2).
Take an r-colouring of K_n. Let $U =$ vertex set of a monochromatic component. $|U| < n \Rightarrow$ complete bipartite graph with classes U and $V(K_n) \setminus U$ is $(r - 1)$-coloured. Lemma 2 \Rightarrow there is a monochromatic tree on at least $\frac{n}{r-1}$ vertices. □

Proof of Lemma 2.
Take an r-colouring of $K_{m,n}$. Let $H =$ bipartite subgraph with most frequent colour.
Proof of Theorem 1 (assuming Lemma 2).

Take an r-colouring of K_n. Let $U =$ vertex set of a monochromatic component. $|U| < n \Rightarrow$ complete bipartite graph with classes U and $V(K_n) \setminus U$ is $(r - 1)$-coloured. Lemma 2 \Rightarrow there is a monochromatic tree on at least $\frac{n}{r - 1}$ vertices. □

Proof of Lemma 2.

Take an r-colouring of $K_{m,n}$. Let $H =$ bipartite subgraph with most frequent colour. For $xy \in E(H)$, let $Z(xy) = d(x) + d(y)$.
Proof of Theorem 1 (assuming Lemma 2).

Take an \(r \)-colouring of \(K_n \). Let \(U \) = vertex set of a monochromatic component. \(|U| < n \Rightarrow \) complete bipartite graph with classes \(U \) and \(V(K_n) \setminus U \) is \((r - 1)\)-coloured. Lemma 2 \(\Rightarrow \) there is a monochromatic tree on at least \(\frac{n}{r-1} \) vertices. \(\square \)

Proof of Lemma 2.

Take an \(r \)-colouring of \(K_{m,n} \). Let \(H = \) bipartite subgraph with most frequent colour. For \(xy \in E(H) \), let \(Z(xy) = d(x) + d(y) \).

\[
\mathbb{E}Z = \frac{1}{e(H)} \sum_{xy \in E(H)} (d(x) + d(y)) = \frac{1}{e(H)} \sum_{v \in V(H)} d(v)^2 \\
\geq \frac{1}{e(H)} \left(\frac{1}{m} + \frac{1}{n} \right) e(H)^2 \geq \frac{m + n}{r}.
\]

\(\square \)
To extend Erdős and Rado’s observation, we can ask for a monochromatic tree of a specific type in r-coloured complete graphs.
To extend Erdős and Rado’s observation, we can ask for a monochromatic tree of a specific type in r-coloured complete graphs.

Theorem 3

In every 2-colouring of K_n, there is a monochromatic spanning ...
To extend Erdős and Rado’s observation, we can ask for a monochromatic tree of a specific type in \(r \)-coloured complete graphs.

Theorem 3

In every 2-colouring of \(K_n \), there is a monochromatic spanning ...

(a) *tree of height at most 2 (Bialostocki, Dierker, Voxman 1992)*;
To extend Erdős and Rado’s observation, we can ask for a monochromatic tree of a specific type in \(r \)-coloured complete graphs.

Theorem 3

In every 2-colouring of \(K_n \), there is a monochromatic spanning ...

(a) **tree of height at most 2** (Bialostocki, Dierker, Voxman 1992);

(b) **subdivided star, with centre with degree at most** \(\left\lceil \frac{n-1}{2} \right\rceil \) (Bialostocki, Dierker, Voxman 1992);
To extend Erdős and Rado’s observation, we can ask for a monochromatic tree of a specific type in r-coloured complete graphs.

Theorem 3

In every 2-colouring of K_n, there is a monochromatic spanning ...

(a) *tree of height at most 2* (Bialostocki, Dierker, Voxman 1992);
(b) *subdivided star, with centre with degree at most $\left\lceil \frac{n-1}{2} \right\rceil$* (Bialostocki, Dierker, Voxman 1992);
(c) *broom (i.e. a path with a star at one end)* (Burr 1992).
Inspired by Lemma 2 and the affine plane construction, Gyárfás and Sárközy asked:
Inspired by Lemma 2 and the affine plane construction, Gyárfás and Sárközy asked:

Question 4 (Gyárfás, Sárközy 2008)

For $r \geq 3$ *and any* r-*colouring of* K_n, *is it true that there is a monochromatic double star on at least* $\frac{n}{r-1}$ *vertices?*
Inspired by Lemma 2 and the affine plane construction, Gyárfás and Sárközy asked:

Question 4 (Gyárfás, Sárközy 2008)

For $r \geq 3$ *and any* r-colouring of K_n, *is it true that there is a monochromatic double star on at least* $\frac{n}{r-1}$ *vertices?*

They proved:
Inspired by Lemma 2 and the affine plane construction, Gyárfás and Sárközy asked:

Question 4 (Gyárfás, Sárközy 2008)

For $r \geq 3$ and any r-colouring of K_n, is it true that there is a monochromatic double star on at least $\frac{n}{r-1}$ vertices?

They proved:

Theorem 5 (Gyárfás, Sárközy 2008)

For $r \geq 2$ and any r-colouring of K_n, there is a monochromatic double star on at least $\frac{(r+1)n+r-1}{r^2}$ vertices.
Inspired by Lemma 2 and the affine plane construction, Gyárfás and Sárközy asked:

Question 4 (Gyárfás, Sárközy 2008)

For \(r \geq 3 \) and any \(r \)-colouring of \(K_n \), is it true that there is a monochromatic double star on at least \(\frac{n}{r-1} \) vertices?

They proved:

Theorem 5 (Gyárfás, Sárközy 2008)

For \(r \geq 2 \) and any \(r \)-colouring of \(K_n \), there is a monochromatic double star on at least \(\frac{(r+1)n+r-1}{r^2} \) vertices.

For \(r = 2 \), we have a monochromatic double star on at least \(\frac{3n+1}{4} \) vertices in any 2-colouring of \(K_n \).
Inspired by Lemma 2 and the affine plane construction, Gyárfás and Sárközy asked:

Question 4 (Gyárfás, Sárközy 2008)

For \(r \geq 3 \) and any \(r \)-colouring of \(K_n \), is it true that there is a monochromatic double star on at least \(\frac{n}{r-1} \) vertices?

They proved:

Theorem 5 (Gyárfás, Sárközy 2008)

For \(r \geq 2 \) and any \(r \)-colouring of \(K_n \), there is a monochromatic double star on at least \(\frac{(r+1)n+r-1}{r^2} \) vertices.

For \(r = 2 \), we have a monochromatic double star on at least \(\frac{3n+1}{4} \) vertices in any 2-colouring of \(K_n \). By considering Paley graphs or random graphs, the value \(\frac{3n}{4} + O(1) \) is tight.
Inspired by Lemma 2 and the affine plane construction, Gyárfás and Sárközy asked:

Question 4 (Gyárfás, Sárközy 2008)

For $r \geq 3$ and any r-colouring of K_n, is it true that there is a monochromatic double star on at least $\frac{n}{r-1}$ vertices?

They proved:

Theorem 5 (Gyárfás, Sárközy 2008)

For $r \geq 2$ and any r-colouring of K_n, there is a monochromatic double star on at least $\frac{(r+1)n+r-1}{r^2}$ vertices.

For $r = 2$, we have a monochromatic double star on at least $\frac{3n+1}{4}$ vertices in any 2-colouring of K_n. By considering Paley graphs or random graphs, the value $\frac{3n}{4} + O(1)$ is tight. Thus, $r \geq 3$ in Question 4 is important.
Monochromatic cycles?
Monochromatic cycles?

Theorem 6 (Faudree, Lesniak, Schiermeyer 2009)

*For any 2-colouring of K_n ($n \geq 6$), there exists a monochromatic cycle with length at least $\lceil \frac{2n}{3} \rceil$.***
Monochromatic cycles?

Theorem 6 (Faudree, Lesniak, Schiermeyer 2009)

For any 2-colouring of K_n ($n \geq 6$), there exists a monochromatic cycle with length at least $\lceil \frac{2n}{3} \rceil$.

Clearly best possible, by taking the 2-colouring of K_n where one colour induces a clique on $\lceil \frac{2n}{3} \rceil$ vertices.
Monochromatic cycles?

Theorem 6 (Faudree, Lesniak, Schiermeyer 2009)

For any 2-colouring of K_n ($n \geq 6$), there exists a monochromatic cycle with length at least $\lceil \frac{2n}{3} \rceil$.

Clearly best possible, by taking the 2-colouring of K_n where one colour induces a clique on $\lceil \frac{2n}{3} \rceil$ vertices.

Let $f(n, r)$ be the maximum integer ℓ such that, every r-colouring of K_n contains a monochromatic cycle of length at least ℓ. The affine plane construction gives $f(n, r) < \frac{n}{r-1} + r$ if $r - 1$ is a prime power. Inspired by this, they also conjectured:
Monochromatic cycles?

Theorem 6 (Faudree, Lesniak, Schiermeyer 2009)

For any 2-colouring of \(K_n \) \((n \geq 6)\), there exists a monochromatic cycle with length at least \(\lceil \frac{2n}{3} \rceil \).

Clearly best possible, by taking the 2-colouring of \(K_n \) where one colour induces a clique on \(\lceil \frac{2n}{3} \rceil \) vertices.

Let \(f(n, r) \) be the maximum integer \(\ell \) such that, every \(r \)-colouring of \(K_n \) contains a monochromatic cycle of length at least \(\ell \). The affine plane construction gives \(f(n, r) < \frac{n}{r-1} + r \) if \(r - 1 \) is a prime power. Inspired by this, they also conjectured:

Conjecture 7 (Faudree, Lesniak, Schiermeyer 2009)

For \(r \geq 3 \) and \(n \) sufficiently large, we have \(f(n, r) \geq \frac{n}{r-1} \).
Monochromatic cycles?

Theorem 6 (Faudree, Lesniak, Schiermeyer 2009)

For any 2-colouring of K_n ($n \geq 6$), there exists a monochromatic cycle with length at least $\lceil \frac{2n}{3} \rceil$.)

Clearly best possible, by taking the 2-colouring of K_n where one colour induces a clique on $\lceil \frac{2n}{3} \rceil$ vertices.

Let $f(n, r)$ be the maximum integer ℓ such that, every r-colouring of K_n contains a monochromatic cycle of length at least ℓ. The affine plane construction gives $f(n, r) < \frac{n}{r-1} + r$ if $r - 1$ is a prime power. Inspired by this, they also conjectured:

Conjecture 7 (Faudree, Lesniak, Schiermeyer 2009)

For $r \geq 3$ and n sufficiently large, we have $f(n, r) \geq \frac{n}{r-1}$.

Fujita, Lesniak, Tóth (2015) showed that Conjecture 7 holds when n is linear in r, with r sufficiently large.
Recall: A graph H is k-connected if $|V(H)| > k$, and for all $C \subset V(H)$ with $|C| < k$, the graph $H - C$ is connected.
Recall: A graph H is \textit{k-connected} if $|V(H)| > k$, and for all $C \subset V(H)$ with $|C| < k$, the graph $H - C$ is connected. Let $m(n, r, k)$ be the maximum integer m such that, for any r-colouring of K_n, there exists a monochromatic k-connected subgraph on at least m vertices. Thus, $m(n, r, 1) = m(n, r)$.
Recall: A graph H is k-connected if $|V(H)| > k$, and for all $C \subseteq V(H)$ with $|C| < k$, the graph $H - C$ is connected.
Let $m(n, r, k)$ be the maximum integer m such that, for any r-colouring of K_n, there exists a monochromatic k-connected subgraph on at least m vertices. Thus, $m(n, r, 1) = m(n, r)$.
$m(n, 2, k) \leq n - 2k + 2$ for $n > 4(k - 1)$, since:
Recall: A graph H is \textit{k-connected} if $|V(H)| \geq k$, and for all $C \subset V(H)$ with $|C| < k$, the graph $H - C$ is connected.

Let $m(n, r, k)$ be the maximum integer m such that, for any r-colouring of K_n, there exists a monochromatic k-connected subgraph on at least m vertices. Thus, $m(n, r, 1) = m(n, r)$.

$m(n, 2, k) \leq n - 2k + 2$ for $n > 4(k - 1)$, since:
Conjecture 8 (Bollobás, Gyárfás 2003)

For \(n > 4(k - 1) \), we have \(m(n, 2, k) = n - 2k + 2 \).
Conjecture 8 (Bollobás, Gyárfás 2003)

For $n > 4(k - 1)$, we have $m(n, 2, k) = n - 2k + 2$.
True for:

- $k = 1$ (Erdős and Rado observation);
- $k = 2$ (Bollobás, Gyárfás 2003);
- $k = 3$ (L., Morris, Prince 2004);
- $n \geq 13k - 15$ (L., Morris, Prince 2004);
- $n > 6(4k - 5)$ (Fujita, Magnant 2011).
Conjecture 8 (Bollobás, Gyárfás 2003)

For \(n > 4(k - 1) \), we have \(m(n, 2, k) = n - 2k + 2 \).

True for:

- \(k = 1 \) (Erdős and Rado observation);
- \(k = 2 \) (Bollobás, Gyárfás 2003);
- \(k = 3 \) (L., Morris, Prince 2004);
- \(n \geq 13k - 15 \) (L., Morris, Prince 2004);
- \(n > 6.5(k - 1) \) (Fujita, Magnant 2011).
Conjecture 8 (Bollobás, Gyárfás 2003)

For $n > 4(k - 1)$, we have $m(n, 2, k) = n - 2k + 2$.

True for:

- $k = 1$ (Erdős and Rado observation);
- $k = 2$ (Bollobás, Gyárfás 2003);
Conjecture 8 (Bollobás, Gyárfás 2003)

For $n > 4(k - 1)$, we have $m(n, 2, k) = n - 2k + 2$.

True for:
- $k = 1$ (Erdős and Rado observation);
- $k = 2$ (Bollobás, Gyárfás 2003);
- $k = 3$ (L., Morris, Prince 2004);
Conjecture 8 (Bollobás, Gyárfás 2003)

For \(n > 4(k - 1) \), we have \(m(n, 2, k) = n - 2k + 2 \).

True for:
- \(k = 1 \) (Erdős and Rado observation);
- \(k = 2 \) (Bollobás, Gyárfás 2003);
- \(k = 3 \) (L., Morris, Prince 2004);
- \(n \geq 13k - 15 \) (L., Morris, Prince 2004);
Conjecture 8 (Bollobás, Gyárfás 2003)

For $n > 4(k - 1)$, we have $m(n, 2, k) = n - 2k + 2$.

True for:

- $k = 1$ (Erdős and Rado observation);
- $k = 2$ (Bollobás, Gyárfás 2003);
- $k = 3$ (L., Morris, Prince 2004);
- $n \geq 13k - 15$ (L., Morris, Prince 2004);
- $n > 6.5(k - 1)$ (Fujita, Magnant 2011).
For $r \geq 3$, Liu, Morris, Prince gave a construction which shows $m(n, r, k) < \frac{n-k+1}{r-1} + r$ if $r - 1$ is a prime power. They conjectured:
For $r \geq 3$, Liu, Morris, Prince gave a construction which shows $m(n, r, k) < \frac{n-k+1}{r-1} + r$ if $r - 1$ is a prime power. They conjectured:

Conjecture 9 (L., Morris, Prince 2004)

For $r \geq 3$ and $n > 2r(k - 1)$, we have $m(n, r, k) \geq \frac{n-k+1}{r-1}$.
For $r \geq 3$, Liu, Morris, Prince gave a construction which shows $m(n, r, k) < \frac{n-k+1}{r-1} + r$ if $r - 1$ is a prime power. They conjectured:

Conjecture 9 (L., Morris, Prince 2004)

For $r \geq 3$ and $n > 2r(k - 1)$, we have $m(n, r, k) \geq \frac{n-k+1}{r-1}$.

Theorem 10 (L., Morris, Prince 2004)

(a) For $r \geq 3$, we have $m(n, r, k) \geq \frac{n}{r-1} - 11k(k - 1)r$. Hence, if k, r are fixed and $r - 1$ is a prime power, then $m(n, r, k) = \frac{n}{r-1} + O(1)$.

(b) For $n \geq 480k$, we have $m(n, 3, k) \geq \frac{n-k+1}{2}$.
Gallai colourings

An edge-colouring of a graph G is a *Gallai colouring* if there is no rainbow triangle.
Gallai colourings

An edge-colouring of a graph G is a Gallai colouring if there is no rainbow triangle. In particular, every 2-colouring of G is a Gallai colouring.
An edge-colouring of a graph G is a **Gallai colouring** if there is no rainbow triangle. In particular, every 2-colouring of G is a Gallai colouring.

Theorem 11 (Gallai 1967)

Any Gallai colouring of a complete graph can be obtained by substituting complete graphs with Gallai colourings for the vertices of a 2-coloured complete graph on at least two vertices.
An edge-colouring of a graph G is a *Gallai colouring* if there is no rainbow triangle. In particular, every 2-colouring of G is a Gallai colouring.

Theorem 11 (Gallai 1967)

Any Gallai colouring of a complete graph can be obtained by substituting complete graphs with Gallai colourings for the vertices of a 2-coloured complete graph on at least two vertices.

Theorem 11 is a “decomposition theorem”. It is widely used to prove results about Gallai colourings.
Many results for 2-colourings extend to Gallai colourings:
Many results for 2-colourings extend to Gallai colourings:

Theorem 12

In every Gallai colouring of K_n, there is a monochromatic ...

Example where such an extension does not hold is when we want to find a monochromatic star. For any 2-colouring of K_n, there is a monochromatic star on at least about n^2 (sharp). But:

Theorem 13 (Gyárfás, Simonyi 2004)

For every Gallai colouring of K_n, there is a monochromatic star with at least $2n^5$ vertices. This bound is sharp.
Many results for 2-colourings extend to Gallai colourings:

Theorem 12

In every Gallai colouring of K_n, there is a monochromatic ...

(a) *spanning tree of height at most 2 (Gyárfás, Simonyi 2004);*
Many results for 2-colourings extend to Gallai colourings:

Theorem 12

In every Gallai colouring of K_n, there is a monochromatic ...

(a) *spanning tree of height at most 2* (Gyárfás, Simonyi 2004);
(b) *spanning broom* (Gyárfás, Simonyi 2004);
Many results for 2-colourings extend to Gallai colourings:

Theorem 12

In every Gallai colouring of K_n, there is a monochromatic ...

(a) spanning tree of height at most 2 (Gyárfás, Simonyi 2004);
(b) spanning broom (Gyárfás, Simonyi 2004);
(c) double star with at least $\frac{3n+1}{4}$ vertices, which is asymptotically best possible (Gyárfás, Sárközy, Sebő, Selkow 2009).
Many results for 2-colourings extend to Gallai colourings:

Theorem 12

In every Gallai colouring of K_n, there is a monochromatic ...

(a) *spanning tree of height at most 2* (Gyárfás, Simonyi 2004);
(b) *spanning broom* (Gyárfás, Simonyi 2004);
(c) *double star with at least* $\frac{3n+1}{4}$ *vertices, which is asymptotically best possible* (Gyárfás, Sárközy, Sebö, Selkow 2009).

Example where such an extension does not hold is when we want to find a monochromatic star. For any 2-colouring of K_n, there is a monochromatic star on at least about $\frac{n}{2}$ (sharp). But:
Many results for 2-colourings extend to Gallai colourings:

Theorem 12

*In every Gallai colouring of K_n, there is a monochromatic ... *

(a) spanning tree of height at most 2 (Gyárfás, Simonyi 2004);
(b) spanning broom (Gyárfás, Simonyi 2004);
(c) double star with at least $\frac{3n+1}{4}$ vertices, which is asymptotically best possible (Gyárfás, Sárközy, Sebő, Selkow 2009).

Example where such an extension does not hold is when we want to find a monochromatic star. For any 2-colouring of K_n, there is a monochromatic star on at least about $\frac{n}{2}$ (sharp). But:

Theorem 13 (Gyárfás, Simonyi 2004)

For every Gallai colouring of K_n, there is a monochromatic star with at least $\frac{2n}{5}$ vertices. This bound is sharp.
Also:

Theorem 14 (Fujita, Magnant 2013)

Let $r \geq 3$ and $k \geq 2$. If $n \geq (r+11)(k-1) + 7k \log k$. Then in any Gallai colouring of K_n with r colours, there is a monochromatic k-connected subgraph on at least $n - r(k - 1)$ vertices.

Problem 15
Improve the bound $n \geq (r+11)(k-1) + 7k \log k$ in Theorem 14.
Also:

Theorem 14 (Fujita, Magnant 2013)

Let $r \geq 3$ and $k \geq 2$. If $n \geq (r + 11)(k - 1) + 7k \log k$. Then in any Gallai colouring of K_n with r colours, there is a monochromatic k-connected subgraph on at least $n - r(k - 1)$ vertices.
Also:

Theorem 14 (Fujita, Magnant 2013)

Let \(r \geq 3 \) and \(k \geq 2 \). If \(n \geq (r + 11)(k - 1) + 7k \log k \). Then in any Gallai colouring of \(K_n \) with \(r \) colours, there is a monochromatic \(k \)-connected subgraph on at least \(n - r(k - 1) \) vertices.

Problem 15

Improve the bound \(n \geq (r + 11)(k - 1) + 7k \log k \) in Theorem 14.
Independence number

Now we consider: What if we colour the edges of a graph G, where the independence number $\alpha(G)$ is fixed?

Theorem 16 (Gyárfás, Sárközy 2010)

For every 2-colouring of a graph G with n vertices and $\alpha(G) = \alpha$, there exists a monochromatic connected subgraph on at least $\lceil n/\alpha \rceil$ vertices. This result is sharp.

They remarked that this can be extended to r-colourings, with $\alpha(r-1)$ in the role of α.

Theorem 17 (Gyárfás, Sárközy 2010)

For every Gallai colouring of a graph G with n vertices and $\alpha(G) = \alpha$, there exists a monochromatic connected subgraph on at least $n\alpha^2 + \alpha - 1$ vertices. This is close to being tight.
Independence number

Now we consider: What if we colour the edges of a graph G, where the independence number $\alpha(G)$ is fixed?

Theorem 16 (Gyárfás, Sárközy 2010)

For every 2-colouring of a graph G with n vertices and $\alpha(G) = \alpha$, there exists a monochromatic connected subgraph on at least $\left\lceil \frac{n}{\alpha} \right\rceil$ vertices. This result is sharp.
Independence number

Now we consider: What if we colour the edges of a graph G, where the independence number $\alpha(G)$ is fixed?

Theorem 16 (Gyárfás, Sárközy 2010)

For every 2-colouring of a graph G with n vertices and $\alpha(G) = \alpha$, there exists a monochromatic connected subgraph on at least $\left\lceil \frac{n}{\alpha} \right\rceil$ vertices. This result is sharp.

They remarked that this can be extended to r-colourings, with $\alpha(r - 1)$ in the role of α.
Independence number

Now we consider: What if we colour the edges of a graph G, where the independence number $\alpha(G)$ is fixed?

Theorem 16 (Gyárfás, Sárközy 2010)

For every 2-colouring of a graph G with n vertices and $\alpha(G) = \alpha$, there exists a monochromatic connected subgraph on at least $\left\lceil \frac{n}{\alpha} \right\rceil$ vertices. This result is sharp.

They remarked that this can be extended to r-colourings, with $\alpha(r - 1)$ in the role of α.

Theorem 17 (Gyárfás, Sárközy 2010)

For every Gallai colouring of a graph G with n vertices and $\alpha(G) = \alpha$, there exists a monochromatic connected subgraph on at least $\frac{n}{\alpha^2 + \alpha - 1}$ vertices. This is close to being tight.
What about finding k-connected subgraphs?
What about finding k-connected subgraphs?

Theorem 18 (L. 2011)

Let G be a graph with n vertices and $\alpha(G) = \alpha$. If $n > \alpha^2 k$, then G contains a k-connected subgraph on at least $\lceil \frac{n}{\alpha} \rceil$ vertices.
What about finding k-connected subgraphs?

Theorem 18 (L. 2011)

Let G be a graph with n vertices and $\alpha(G) = \alpha$. If $n > \alpha^2 k$, then G contains a k-connected subgraph on at least $\lceil \frac{n}{\alpha} \rceil$ vertices.

$\lceil \frac{n}{\alpha} \rceil$ clearly tight: take G to be the graph on n vertices with α disjoint cliques, each with $\lfloor \frac{n}{\alpha} \rfloor$ or $\lceil \frac{n}{\alpha} \rceil$ vertices.
What about finding k-connected subgraphs?

Theorem 18 (L. 2011)

Let G be a graph with n vertices and $\alpha(G) = \alpha$. If $n > \alpha^2 k$, then G contains a k-connected subgraph on at least $\lceil \frac{n}{\alpha} \rceil$ vertices.

$\lceil \frac{n}{\alpha} \rceil$ clearly tight: take G to be the graph on n vertices with α disjoint cliques, each with $\lfloor \frac{n}{\alpha} \rfloor$ or $\lceil \frac{n}{\alpha} \rceil$ vertices.

Problem 19

*Improve the bound $n > \alpha^2 k$.**
What about finding k-connected subgraphs?

Theorem 18 (L. 2011)

Let G be a graph with n vertices and $\alpha(G) = \alpha$. If $n > \alpha^2 k$, then G contains a k-connected subgraph on at least $\left\lceil \frac{n}{\alpha} \right\rceil$ vertices.

$\left\lceil \frac{n}{\alpha} \right\rceil$ clearly tight: take G to be the graph on n vertices with α disjoint cliques, each with $\left\lfloor \frac{n}{\alpha} \right\rfloor$ or $\left\lceil \frac{n}{\alpha} \right\rceil$ vertices.

Problem 19

Improve the bound $n > \alpha^2 k$.

Problem 20

What happens for the edge-coloured version?
References

Thank you!