Rainbow Connection in Hypergraphs

Henry Liu

Universidade Nova de Lisboa, Portugal

Joint work with Rui Carpentier, Manuel Silva and Teresa Sousa

Bordeaux Graph Workshop, 21 to 24 November 2012
All graphs and hypergraphs are simple and finite.
Introduction

All graphs and hypergraphs are simple and finite.

Definition

The *rainbow connection number* $rc(G)$ of a connected graph G is the minimum number of colours needed to colour the edges of G such that, any two vertices are connected by a path with distinct colours (i.e., a *rainbow path*).
Introduction

All graphs and hypergraphs are simple and finite.

Definition

The *rainbow connection number* $rc(G)$ of a connected graph G is the minimum number of colours needed to colour the edges of G such that, any two vertices are connected by a path with distinct colours (i.e., a *rainbow path*).

The function $rc(G)$ was first introduced by Chartrand, Johns, McKeon and Zhang in 2008.
Introduction

All graphs and hypergraphs are simple and finite.

Definition

The *rainbow connection number* $rc(G)$ of a connected graph G is the minimum number of colours needed to colour the edges of G such that, any two vertices are connected by a path with distinct colours (i.e., a *rainbow path*).

The function $rc(G)$ was first introduced by Chartrand, Johns, McKeon and Zhang in 2008.

The study of $rc(G)$ has since attracted a lot of interest. Many generalisations and variant functions have been considered. Recently, a survey by Li, Shi and Sun, and a book by Li and Sun, were published on the rainbow connection subject.
Example (Chartrand et al., 2008)

\[rc(G) = e(G) \text{ if and only if } G \text{ is a tree.} \]
Example (Chartrand et al., 2008)

\[rc(G) = e(G) \text{ if and only if } G \text{ is a tree.} \]

Example (Chartrand et al., 2008)

\[rc(C_3) = 1, \text{ and } rc(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ if } n \geq 4. \]
Example (Chartrand et al., 2008)
\[rc(G) = e(G) \text{ if and only if } G \text{ is a tree.} \]

Example (Chartrand et al., 2008)
\[rc(C_3) = 1, \text{ and } rc(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ if } n \geq 4. \]
We consider the rainbow connection notion for hypergraphs.
We consider the rainbow connection notion for hypergraphs. But, what is a path in a hypergraph?
We consider the rainbow connection notion for hypergraphs. But, what is a path in a hypergraph?

Definition

A (Berge) **path** consists of distinct vertices $v_1, \ldots, v_{\ell + 1}$ and distinct edges e_1, \ldots, e_ℓ such that $v_i, v_{i+1} \in e_i$ for $1 \leq i \leq \ell$.
We consider the rainbow connection notion for hypergraphs. But, what is a path in a hypergraph?

Definition

A *Berge* path consists of distinct vertices \(v_1, \ldots, v_{\ell+1} \) and distinct edges \(e_1, \ldots, e_\ell \) such that \(v_i, v_{i+1} \in e_i \) for \(1 \leq i \leq \ell \).
We consider the rainbow connection notion for hypergraphs. But, what is a path in a hypergraph?

Definition

A *(Berge)* path consists of distinct vertices $v_1, \ldots, v_{\ell+1}$ and distinct edges e_1, \ldots, e_ℓ such that $v_i, v_{i+1} \in e_i$ for $1 \leq i \leq \ell$.

![Hypergraph Path Diagram](image)
We consider the rainbow connection notion for hypergraphs. But, what is a path in a hypergraph?

Definition
A (Berge) path consists of distinct vertices \(v_1, \ldots, v_{\ell+1}\) and distinct edges \(e_1, \ldots, e_\ell\) such that \(v_i, v_{i+1} \in e_i\) for \(1 \leq i \leq \ell\).
We consider the rainbow connection notion for hypergraphs. But, what is a path in a hypergraph?

Definition

A (Berge) path consists of distinct vertices $v_1, \ldots, v_{\ell+1}$ and distinct edges e_1, \ldots, e_{ℓ} such that $v_i, v_{i+1} \in e_i$ for $1 \leq i \leq \ell$.

Definition

The rainbow connection number $rc(\mathcal{H})$ of a connected hypergraph \mathcal{H} is the minimum number of colours needed to colour the edges of \mathcal{H} such that, any two vertices are connected by a rainbow path.
Definition

For $1 \leq s < r$, an (r, s)-path is an r-uniform interval hypergraph where every two consecutive edges intersect in s vertices.
Definition

For $1 \leq s < r$, an (r, s)-path is an r-uniform interval hypergraph where every two consecutive edges intersect in s vertices.

(5, 2)-path of length 3
Definition

For $1 \leq s < r$, an (r, s)-path is an r-uniform interval hypergraph where every two consecutive edges intersect in s vertices.

(5, 2)-path of length 3

Definition

The (r, s)-rainbow connection number $rc(\mathcal{H}, r, s)$ of a connected hypergraph \mathcal{H} is the minimum number of colours needed to colour the edges of \mathcal{H} such that, any two vertices are connected by a rainbow (r, s)-path (if the minimum exists).
Definition
For $1 \leq s < r$, an (r, s)-path is an r-uniform interval hypergraph where every two consecutive edges intersect in s vertices.

(5, 2)-path of length 3

Definition
The (r, s)-rainbow connection number $rc(H, r, s)$ of a connected hypergraph H is the minimum number of colours needed to colour the edges of H such that, any two vertices are connected by a rainbow (r, s)-path (if the minimum exists).

Hence, we have two generalisations of $rc(G)$ to hypergraphs.
Definition

A connected hypergraph \mathcal{H} is minimally connected if $\mathcal{H} - e$ is disconnected for all $e \in E(\mathcal{H})$.
Definition

A connected hypergraph \mathcal{H} is \textit{minimally connected} if $\mathcal{H} - e$ is disconnected for all $e \in E(\mathcal{H})$.

Theorem 1 (CLSS, 2012)

Let \mathcal{H} be a connected hypergraph with $e(\mathcal{H}) \geq 1$. Then, $rc(\mathcal{H}) = e(\mathcal{H})$ if and only if \mathcal{H} is minimally connected.
Definition
A connected hypergraph \mathcal{H} is \textit{minimally connected} if $\mathcal{H} - e$ is disconnected for all $e \in E(\mathcal{H})$.

Theorem 1 (CLSS, 2012)
Let \mathcal{H} be a connected hypergraph with $e(\mathcal{H}) \geq 1$. Then, $rc(\mathcal{H}) = e(\mathcal{H})$ if and only if \mathcal{H} is minimally connected.

Remark
It is not true that $rc(\mathcal{H}) = e(\mathcal{H})$ if and only if \mathcal{H} is a hypertree.
For example, let $\mathcal{H} = \cdots$
Definition
A connected hypergraph \mathcal{H} is minimally connected if $\mathcal{H} - e$ is disconnected for all $e \in E(\mathcal{H})$.

Theorem 1 (CLSS, 2012)
Let \mathcal{H} be a connected hypergraph with $e(\mathcal{H}) \geq 1$. Then, $rc(\mathcal{H}) = e(\mathcal{H})$ if and only if \mathcal{H} is minimally connected.

Remark
It is not true that $rc(\mathcal{H}) = e(\mathcal{H})$ if and only if \mathcal{H} is a hypertree. For example, let $\mathcal{H} = \cdots$
Definition
A connected hypergraph \(\mathcal{H} \) is minimally connected if \(\mathcal{H} - e \) is disconnected for all \(e \in E(\mathcal{H}) \).

Theorem 1 (CLSS, 2012)
Let \(\mathcal{H} \) be a connected hypergraph with \(e(\mathcal{H}) \geq 1 \). Then, \(\text{rc}(\mathcal{H}) = e(\mathcal{H}) \) if and only if \(\mathcal{H} \) is minimally connected.

Remark
It is not true that \(\text{rc}(\mathcal{H}) = e(\mathcal{H}) \) if and only if \(\mathcal{H} \) is a hypertree. For example, let \(\mathcal{H} = \cdots \)

\[\text{rc}(\mathcal{H}) = 2 \]
Definition

A connected hypergraph \(\mathcal{H} \) is minimally connected if \(\mathcal{H} - e \) is disconnected for all \(e \in E(\mathcal{H}) \).

Theorem 1 (CLSS, 2012)

Let \(\mathcal{H} \) be a connected hypergraph with \(e(\mathcal{H}) \geq 1 \). Then,
\[
rc(\mathcal{H}) = e(\mathcal{H}) \text{ if and only if } \mathcal{H} \text{ is minimally connected.}
\]

Remark

It is not true that \(rc(\mathcal{H}) = e(\mathcal{H}) \) if and only if \(\mathcal{H} \) is a hypertree. For example, let \(\mathcal{H} = \cdots \)

\[
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}
\]

\[
rc(\mathcal{H}) = 2 \\
e(\mathcal{H}) = 3
\]
Definition

A connected hypergraph \mathcal{H} is **minimally connected** if $\mathcal{H} - e$ is disconnected for all $e \in E(\mathcal{H})$.

Theorem 1 (CLSS, 2012)

Let \mathcal{H} be a connected hypergraph with $e(\mathcal{H}) \geq 1$. Then, $rc(\mathcal{H}) = e(\mathcal{H})$ if and only if \mathcal{H} is minimally connected.

Remark

It is not true that $rc(\mathcal{H}) = e(\mathcal{H})$ if and only if \mathcal{H} is a hypertree. For example, let $\mathcal{H} = \cdots$

\[
\begin{align*}
\text{rc}(\mathcal{H}) &= 2 \\
\text{e}(\mathcal{H}) &= 3
\end{align*}
\]

Minimally connected hypergraphs and hypertrees are two rather different families, unlike in the graphs setting.
Definition

For $n > r \geq 2$, the (n, r)-cycle is the r-uniform hypergraph C_r^n...
Hypergraph Cycles

Definition

For $n > r \geq 2$, the (n, r)-cycle is the r-uniform hypergraph C^r_n ...
Hypergraph Cycles

Definition

For $n > r \geq 2$, the (n, r)-cycle is the r-uniform hypergraph C_n^r ...
Definition

For $n > r \geq 2$, the (n, r)-cycle is the r-uniform hypergraph C_r^n ...

(7, 3)-cycle
Definition

For $n > r \geq 2$, the (n, r)-cycle is the r-uniform hypergraph C_{n}^{r} ...

$(7, 3)$-cycle

$rc(C_{n}^{r}, r, s)$ well-defined for all $1 \leq s < r$. We consider $r \geq 3$.

Henry Liu
Rainbow Connection in Hypergraphs
Theorem 2 (CLSS, 2012)

Let $n > r \geq 3$. Then for sufficiently large n,

(a) $rc(C_n^r) = rc(C_n^r, r, 1) = \lceil \frac{n}{2(r-1)} \rceil$.

(b) $rc(C_n^r, r, r - 1) = \lceil \frac{n}{2} \rceil$.

(c) $rc(C_n^r, r, s) \in \{d, d + 1\}$ for $1 \leq s \leq r - 2$, where

$$d = \lceil \frac{n+1-2s}{2(r-s)} \rceil,$$

the "(r, s)-diameter of C_n^r".

Hence, $rc(C_n^r, r, s) = \lceil \frac{n}{2(r-s)} \rceil + O(1)$ for all $1 \leq s < r$.
Theorem 2 (CLSS, 2012)

Let \(n > r \geq 3 \). Then for sufficiently large \(n \),

(a) \(rc(C^r_n) = rc(C^r_n, r, 1) = \lceil \frac{n}{2(r-1)} \rceil \).

(b) \(rc(C^r_n, r, r-1) = \lceil \frac{n}{2} \rceil \).

(c) \(rc(C^r_n, r, s) \in \{ d, d + 1 \} \) for \(1 \leq s \leq r - 2 \), where

\[
 d = \left\lceil \frac{n+1-2s}{2(r-s)} \right\rceil,
\]

the "(r, s)-diameter of \(C^r_n \)".

Hence, \(rc(C^r_n, r, s) = \left\lceil \frac{n}{2(r-s)} \right\rceil + O(1) \) for all \(1 \leq s < r \).

Proof (sketch).

Lower bound: Computation of \(d \) is easy \(\Rightarrow \) (a) (except for \(n \equiv 1 \) (mod \(2(r-1) \))) and (c). Remaining lower bounds also easy.
Theorem 2 (CLSS, 2012)

Let \(n > r \geq 3 \). Then for sufficiently large \(n \),
(a) \(\text{rc}(C^r_n) = \text{rc}(C^r_n, r, 1) = \lceil \frac{n}{2(r-1)} \rceil \).
(b) \(\text{rc}(C^r_n, r, r-1) = \lceil \frac{n}{2} \rceil \).
(c) \(\text{rc}(C^r_n, r, s) \in \{d, d+1\} \) for \(1 \leq s \leq r-2 \), where
\(d = \lceil \frac{n+1-2s}{2(r-s)} \rceil \), the “\((r, s)\)-diameter of \(C^r_n \)”.

Hence, \(\text{rc}(C^r_n, r, s) = \lceil \frac{n}{2(r-s)} \rceil + O(1) \) for all \(1 \leq s < r \).

Proof (sketch).

Lower bound: Computation of \(d \) is easy \(\Rightarrow \) (a) (except for \(n \equiv 1 \) (mod 2(\(r - 1 \)))) and (c). Remaining lower bounds also easy.
Upper bound: Colour a “wraparound” \((r, s)\)-path with the required number of colours. \(\square \)
Complete Multipartite Hypergraphs

Definition

For $t \geq r \geq 2$ and $1 \leq n_1 \leq \cdots \leq n_t$, the r-uniform hypergraph K_{n_1, \ldots, n_t} is ...
Definition

For \(t \geq r \geq 2 \) and \(1 \leq n_1 \leq \cdots \leq n_t \), the \(r \)-uniform hypergraph \(\mathcal{K}_{n_1, \ldots, n_t} \) is ...

\[
\mathcal{K}^3_{2,2,3,4}
\]
Complete Multipartite Hypergraphs

Definition

For \(t \geq r \geq 2 \) and \(1 \leq n_1 \leq \cdots \leq n_t \), the \(r \)-uniform hypergraph \(\mathcal{K}_{n_1, \ldots, n_t} \) is ...

\[\mathcal{K}_{2,2,3,4} \]
Complete Multipartite Hypergraphs

Definition
For $t \geq r \geq 2$ and $1 \leq n_1 \leq \cdots \leq n_t$, the r-uniform hypergraph $\mathcal{K}^r_{n_1,\ldots,n_t}$ is ...

$\mathcal{K}^{3}_{2,2,3,4}$

$\mathcal{K}^{r}_{n_1,\ldots,n_t}$ is a complete multipartite hypergraph.
\(\text{rc}(K^2_{n_1, \ldots, n_t}) \) determined by Chartrand et al. Let \(r \geq 3 \).
rc(K_{n_1,\ldots,n_t}^2) determined by Chartrand et al. Let $r \geq 3$.

Theorem 3 (CLSS, 2012)

Let $t \geq r \geq 3$ and $1 \leq n_1 \leq \cdots \leq n_t$. Then,

$$rc(K_{n_1,\ldots,n_t}^r) = \begin{cases}
1 & \text{if } n_t = 1, \\
2 & \text{if } n_{t-1} \geq 2, \text{ or } t > r, n_{t-1} = 1 \text{ and } n_t \geq 2, \\
n_t & \text{if } t = r \text{ and } n_{t-1} = 1.
\end{cases}$$

Proof not too difficult. For the last case, K_{n_1,\ldots,n_t}^r is minimally connected.
rc($\mathcal{K}^2_{n_1,...,n_t}$) determined by Chartrand et al. Let $r \geq 3$.

Theorem 3 (CLSS, 2012)

Let $t \geq r \geq 3$ and $1 \leq n_1 \leq \cdots \leq n_t$. Then,

$$rc(\mathcal{K}^r_{n_1,...,n_t}) = \begin{cases} 1 & \text{if } n_t = 1, \\ 2 & \text{if } n_{t-1} \geq 2, \text{ or } t > r, n_{t-1} = 1 \text{ and } n_t \geq 2, \\ n_t & \text{if } t = r \text{ and } n_{t-1} = 1. \end{cases}$$

Proof not too difficult. For the last case, $\mathcal{K}^r_{n_1,...,n_t}$ is minimally connected.
\(rc(K_{n_1,\ldots,n_t}^2) \) determined by Chartrand et al. Let \(r \geq 3 \).

Theorem 3 (CLSS, 2012)

Let \(t \geq r \geq 3 \) and \(1 \leq n_1 \leq \cdots \leq n_t \). Then,

\[
rc(K_{n_1,\ldots,n_t}^r) = \begin{cases}
1 & \text{if } n_t = 1, \\
2 & \text{if } n_{t-1} \geq 2, \text{ or } t > r, n_{t-1} = 1 \text{ and } n_t \geq 2, \\
n_t & \text{if } t = r \text{ and } n_{t-1} = 1.
\end{cases}
\]

Proof not too difficult. For the last case, \(K_{n_1,\ldots,n_t}^r \) is minimally connected.

More interesting to consider \(rc(K_{n_1,\ldots,n_t}^r, r, s) \).
Theorem 4 (CLSS, 2012)

Let $t \geq r \geq 3$, $s \leq r - 2$ and $1 \leq n_1 \leq \cdots \leq n_t$ be such that $n_t = 1$ or $n_{2(t-r)+s+1} \geq 2$. Then,

$$rc(K_{n_1,\ldots,n_t}, r, s) = \begin{cases} 1 & \text{if } n_t = 1, \\ 2 & \text{if } n_t \geq 2. \end{cases}$$
Theorem 4 (CLSS, 2012)

Let $t \geq r \geq 3$, $s \leq r - 2$ and $1 \leq n_1 \leq \cdots \leq n_t$ be such that $n_t = 1$ or $n_{2(t-r)+s+1} \geq 2$. Then,

$$rc(K_{n_1,\ldots,n_t}^r, r, s) = \begin{cases} 1 & \text{if } n_t = 1, \\ 2 & \text{if } n_t \geq 2. \end{cases}$$

Proof still not difficult. But surprisingly, $rc(K_{n_1,\ldots,n_t}^r, r, r - 1)$ is a lot more difficult to determine ...
Theorem 5 (CLSS, 2012)

Let \(t \geq r \geq 3 \), \(1 \leq n_1 \leq \cdots \leq n_t \), \(n = n_t \) and \(b = \sum_S \prod_{i \in S} n_i \), where \(S \) ranges over all subsets of \(\{1, \ldots, t-1\} \) with size \(r-1 \). Then,

\[
rc(H_{n_1,\ldots,n_t}^{r}, r, r-1) = \begin{cases}
1 & \text{if } n_t = 1, \\
\lceil b\sqrt{n} \rceil & \text{if } t = r \text{ and } n_1 = 1, \\
\min(\lceil b\sqrt{n} \rceil, r+2) & \text{if } t = r \text{ and } n_1 \geq 2, \\
\min(\lceil b\sqrt{n} \rceil, 3) & \text{if } t > r.
\end{cases}
\]
Proof (sketch).
Upper bound \(rc(K_{n_1, \ldots, n_t}, r, r-1) \leq \lceil \sqrt[n]{n} \rceil =: k \).
Proof (sketch).
Upper bound $rc(\mathcal{K}_{n_1,...,n_t}^r, r, r - 1) \leq \lceil \sqrt[n]{k} \rceil =: k$.

\begin{center}
\begin{tikzpicture}
 \foreach \x in {1,2,...,t-1} {
 \node[draw,ellipse] (n\x) at (\x,0) {n_{\x}};
 }
 \node[draw,ellipse] (nt) at (t,0) {n_{t-1}};
 \node[draw,ellipse] (nt1) at (t+0.5,0) {\ldots};
 \node[draw,ellipse] (nt2) at (t+2,0) {n_t};
 \path (n1) edge (n2) edge (nt1);
\end{tikzpicture}
\end{center}
Proof (sketch).

Upper bound $rc(\mathcal{H}_{n_1, \ldots, n_t, r, r-1}) \leq \lceil b\sqrt{n} \rceil = k$.

\[n_1 \quad n_2 \quad \ldots \quad n_{t-1} \]

\[\begin{array}{c}
 w \\
 \downarrow \\
 (t-1)\text{-tuple of functions } \{W^{S_1}, W^{S_2}, \ldots\} \text{ s.t. } w \neq w' \text{ get distinct tuples}
\end{array} \]

\[n_t \]
Proof (sketch).

Upper bound $\text{rc}(\mathcal{K}^r_{n_1,\ldots,n_t}, r, r - 1) \leq \lceil \sqrt{b/n} \rceil =: k$.

\[
\begin{array}{cccc}
 n_1 & n_2 & \cdots & n_{t-1} \\
 \hline
\end{array}
\]

\[
\begin{array}{c}
 n_t \\
 \hline
\end{array}
\]

\[
({t-1\choose r-1})\text{-tuple of functions } \{W^{S_1}, W^{S_2}, \ldots\} \text{ s.t. } w \neq w' \text{ get distinct tuples}
\]

If $W^{S_j}(i_1, \ldots, i_{r-1}) = c \in \{1, \ldots, k\}$
Proof (sketch).

Upper bound $rc(K_{r,n_1,...,n_t}, r, r - 1) \leq \lceil \sqrt[n]{n} \rceil =: k$.

$(t-1)$-tuple of functions $\{W^{S_1}, W^{S_2}, \ldots \}$ s.t. $w \neq w'$ get distinct tuples

If $W^{S_j}(i_1, \ldots, i_{r-1}) = c \in \{1, \ldots, k\}$
Proof (sketch).

Upper bound $\text{rc}(\mathcal{K}^{r}_{n_1,\ldots,n_t}, r, r - 1) \leq \lceil \frac{b}{\sqrt{n}} \rceil =: k$.

$(t-1)$-tuple of functions $\{W^{S_1}, W^{S_2}, \ldots\}$ s.t. $w \neq w'$ get distinct tuples

If $W^{S_j}(i_1, \ldots, i_{r-1}) = c \in \{1, \ldots, k\}$

This is a good k-colouring.
Proof (sketch).

Upper bound $rc(K^{r}_{\prod_{1}^{n_{1}}, \ldots, \prod_{t}^{n_{t}}}, r, r-1) \leq \lceil b\sqrt{n} \rceil =: k$.

\[
\binom{t-1}{r-1}-\text{tuple of functions } \{W^{S_{1}}, W^{S_{2}}, \ldots\} \text{ s.t. } w \neq w' \text{ get distinct tuples}
\]

If $W^{S_{j}}(i_{1}, \ldots, i_{r-1}) = c \in \{1, \ldots, k\}$

This is a good k-colouring.

$rc(K^{r}_{\prod_{1}^{n_{1}}, \ldots, \prod_{t}^{n_{t}}}, r, r-1) \leq r + 2$ if $t = r$ and $n_{1} \geq 2$; and

$rc(K^{r}_{\prod_{1}^{n_{1}}, \ldots, \prod_{t}^{n_{t}}}, r, r-1) \leq 3$ if $t > r$: similar idea.
Proof (sketch, ctd.).

Lower bound for $t > r$: $rc(\mathcal{K}_{n_1,\ldots,n_t}^r, r, r-1) \geq \min(\lceil b\sqrt{n} \rceil, 3)$.
Proof (sketch, ctd.).

Lower bound for $t > r$: $rc(K_{n_1,\ldots,n_t}, r, r-1) \geq \min(\lceil b\sqrt{n} \rceil, 3)$. Take a 2-colouring.
Proof (sketch, ctd.).

Lower bound for $t > r$: $rc(K_{n_1,\ldots,n_t}, r, r-1) \geq \min(\lceil b\sqrt{n} \rceil, 3)$. Take a 2-colouring.

\[\begin{align*}
 n_1 & \quad n_2 & \quad \cdots & \quad n_{t-1} \\
 n_t & \\
\end{align*} \]
Proof (sketch, ctd.).

Lower bound for $t > r$: $rc(K_{n_1, \ldots, n_t, r, r-1}) \geq \min\left(\lceil \sqrt{b} \cdot \sqrt{n} \rceil, 3 \right)$. Take a 2-colouring.

$c \in \{1, 2\}$
Proof (sketch, ctd.).

Lower bound for \(t > r \): \(\text{rc}(K_{n_1, \ldots, n_t, r, r-1}) \geq \min(\lceil b\sqrt{n} \rceil, 3) \). Take a 2-colouring.

\[
\begin{align*}
\text{c} \in \{1, 2\} \\
(t-1)\text{-tuple of functions } \{W_{S_1}, W_{S_2}, \ldots\} \text{ s.t. } W_{S_j}(i_1, \ldots, i_{r-1}) = c
\end{align*}
\]
Proof (sketch, ctd.).

Lower bound for $t > r$: $rc(K_{n_1, \ldots, n_t}, r, r - 1) \geq \min(\lceil b\sqrt{n} \rceil, 3)$. Take a 2-colouring.

n_1 n_2 \cdots n_{t-1}

$c \in \{1, 2\}$

$(t-1)$-tuple of functions $\{W^{S_1}, W^{S_2}, \ldots\}$ s.t. $W^{S_j}(i_1, \ldots, i_{r-1}) = c$

Then $\exists w, w'$ with the same $(t-1)$-tuples
Proof (sketch, ctd.).

Lower bound for \(t > r \): \(rc(K_{n_1,...,n_t}, r, r - 1) \geq \min(\lceil b\sqrt{n} \rceil, 3) \). Take a 2-colouring.

\[
\begin{align*}
&n_1 \quad n_2 \quad \cdots \quad n_{t-1} \\
&i_1 \quad i_2 \quad \cdots \quad i_{r-1} \\
&\quad \quad \quad \quad \quad w \\
&\quad \quad \quad \quad \quad n_t
\end{align*}
\]

\(c \in \{1, 2\} \)

\((t-1)\)-tuple of functions \(\{W^{S_1}, W^{S_2}, \ldots\} \) s.t. \(W^{S_j}(i_1, \ldots, i_{r-1}) = c \)

Then \(\exists w, w' \) with the same \((t-1)\)-tuples \(\not\exists \) rainbow \(w - w' \)
\((r, r - 1)\)-path, and the 2-colouring is bad.
Proof (sketch, ctd.).

Lower bound for $t > r$: $rc(K_{n_1, \ldots, n_t, r, r-1}) \geq \min(\lceil \sqrt[2]{n} \rceil, 3)$. Take a 2-colouring.

\[
\begin{align*}
\text{Consider a } (t-1)\text{-tuple of functions } \{W^{S_1}, W^{S_2}, \ldots\} \text{ s.t. } W^{S_j}(i_1, \ldots, i_{r-1}) = c \\
\text{Then } \exists w, w' \text{ with the same } (t-1)\text{-tuples } \Rightarrow \text{no rainbow } w - w' \text{ } (r, r-1)\text{-path, and the 2-colouring is bad.}
\end{align*}
\]

Other lower bounds: similar. □
Separation Results

Theorem 6 (CLSS, 2012)

Let $a > 0$, $r \geq 3$ and $1 \leq s \neq s' < r$. Then, there exists an r-uniform hypergraph \mathcal{H} such that $rc(\mathcal{H}, r, s) - rc(\mathcal{H}) \geq a$, and there exists an r-uniform hypergraph \mathcal{H} such that $rc(\mathcal{H}, r, s) - rc(\mathcal{H}, r, s') \geq a$.

Proof. First part with $s > 1$, and second part with $s > s'$, take $\mathcal{H} = C_r^n$. \Rightarrow Difference is at least $n^2(r - s) - n^2(r - s') + O(1) \geq \Omega(n^2)$.

Henry Liu

Rainbow Connection in Hypergraphs
Theorem 6 (CLSS, 2012)

Let $a > 0$, $r \geq 3$ and $1 \leq s \neq s' < r$. Then, there exists an r-uniform hypergraph \mathcal{H} such that $rc(\mathcal{H}, r, s) - rc(\mathcal{H}) \geq a$, and there exists an r-uniform hypergraph \mathcal{H} such that $rc(\mathcal{H}, r, s) - rc(\mathcal{H}, r, s') \geq a$.

Proof.
First part with $s > 1$, and second part with $s > s'$, take $\mathcal{H} = \mathcal{C}_n^r$.

\Rightarrow Difference is at least

$$\frac{n}{2(r - s)} - \frac{n}{2(r - s')} + O(1) \geq \Omega(n).$$
Proof (ctd.).

First part with $s = 1$ and second part with $s < s'$, take the following construction for \mathcal{H}.
Proof (ctd.).

First part with $s = 1$ and second part with $s < s'$, take the following construction for \mathcal{H}.

![Diagram](image.png)
Proof (ctd.).

First part with $s = 1$ and second part with $s < s'$, take the following construction for \mathcal{H}.

\begin{align*}
&\text{Above colouring } \Rightarrow r_c(\mathcal{H}) = r_c(\mathcal{H}, r, s') = 2. \\
&\text{Considering } u \text{ and } v \Rightarrow r_c(\mathcal{H}, r, s) \geq \text{length of } (r, s)-\text{path}. \\
&\square
\end{align*}
Proof (ctd.).

First part with $s = 1$ and second part with $s < s'$, take the following construction for \mathcal{H}.

Above colouring $\Rightarrow \text{rc}(\mathcal{H}) = \text{rc}(\mathcal{H}, r, s') = 2$.
Proof (ctd.).
First part with $s = 1$ and second part with $s < s'$, take the following construction for \mathcal{H}.

Above colouring $\Rightarrow \text{rc}(\mathcal{H}) = \text{rc}(\mathcal{H}, r, s') = 2$.
Considering u and v $\Rightarrow \text{rc}(\mathcal{H}, r, s) \geq \text{length of } (r, s)$-path. □
References

Thank you!