Rainbow cycles through specified vertices

Henry Liu

Central South University

Workshop on Colored Notions of Connectivity in Graphs,
Nankai University, 29-31 May 2017
Let $G$ be a finite, simple graph such that any $k$ vertices lie on a cycle in $G$. Let $\mathcal{F}_k$ denote all graphs $G$ with this property.
Let $G$ be a finite, simple graph such that any $k$ vertices lie on a cycle in $G$. Let $\mathcal{F}_k$ denote all graphs $G$ with this property.

$\mathcal{F}_k$ contains many important families of graphs, such as Hamiltonian and pancyclic graphs on at least $k$ vertices.
Let $G$ be a finite, simple graph such that any $k$ vertices lie on a cycle in $G$. Let $\mathcal{F}_k$ denote all graphs $G$ with this property.

$\mathcal{F}_k$ contains many important families of graphs, such as Hamiltonian and pancyclic graphs on at least $k$ vertices. For $k \geq 2$, Dirac’s famous result (1960) implies that $\mathcal{F}_k$ contains all $k$-connected graphs.
Let $G$ be a finite, simple graph such that any $k$ vertices lie on a cycle in $G$. Let $\mathcal{F}_k$ denote all graphs $G$ with this property.

$\mathcal{F}_k$ contains many important families of graphs, such as Hamiltonian and pancyclic graphs on at least $k$ vertices. For $k \geq 2$, Dirac’s famous result (1960) implies that $\mathcal{F}_k$ contains all $k$-connected graphs. Conversely, if $G \in \mathcal{F}_k$ ($k \geq 2$), then $G$ must necessarily be 2-connected.
Let $G$ be a finite, simple graph such that any $k$ vertices lie on a cycle in $G$. Let $\mathcal{F}_k$ denote all graphs $G$ with this property. $\mathcal{F}_k$ contains many important families of graphs, such as Hamiltonian and pancyclic graphs on at least $k$ vertices. For $k \geq 2$, Dirac’s famous result (1960) implies that $\mathcal{F}_k$ contains all $k$-connected graphs. Conversely, if $G \in \mathcal{F}_k$ ($k \geq 2$), then $G$ must necessarily be 2-connected. For $k \geq 3$, no simple characterisation of $\mathcal{F}_k$ is known.
Let $G$ be a finite, simple graph such that any $k$ vertices lie on a cycle in $G$. Let $\mathcal{F}_k$ denote all graphs $G$ with this property. $\mathcal{F}_k$ contains many important families of graphs, such as Hamiltonian and pancyclic graphs on at least $k$ vertices. For $k \geq 2$, Dirac’s famous result (1960) implies that $\mathcal{F}_k$ contains all $k$-connected graphs. Conversely, if $G \in \mathcal{F}_k$ ($k \geq 2$), then $G$ must necessarily be 2-connected. For $k \geq 3$, no simple characterisation of $\mathcal{F}_k$ is known.

An edge-coloured graph is *rainbow* if its edges have distinct colours.
Let $G$ be a finite, simple graph such that any $k$ vertices lie on a cycle in $G$. Let $\mathcal{F}_k$ denote all graphs $G$ with this property.

$\mathcal{F}_k$ contains many important families of graphs, such as Hamiltonian and pancyclic graphs on at least $k$ vertices. For $k \geq 2$, Dirac’s famous result (1960) implies that $\mathcal{F}_k$ contains all $k$-connected graphs. Conversely, if $G \in \mathcal{F}_k$ ($k \geq 2$), then $G$ must necessarily be 2-connected. For $k \geq 3$, no simple characterisation of $\mathcal{F}_k$ is known.

An edge-coloured graph is *rainbow* if its edges have distinct colours. For $G \in \mathcal{F}_k$, the *$k$-rainbow cycle index* of $G$, denoted by $\text{crx}_k(G)$, is the least number of colours needed to colour the edges of $G$ so that every $k$ vertices lie on a rainbow cycle.
Motivations ...
Motivations …

- The study of $\text{cr}x_k(G)$ can be classified as a “cycles through specified vertices” type problem.
Motivations …

- The study of $\text{crx}_k(G)$ can be classified as a “cycles through specified vertices” type problem.
- The study of rainbow subgraphs in coloured graphs is also very important,
Motivations …

- The study of $\text{crx}_k(G)$ can be classified as a “cycles through specified vertices” type problem.

- The study of rainbow subgraphs in coloured graphs is also very important, e.g., anti-Ramsey numbers (Erdős, Simonovits, Sós, 1973), and rainbow Turán numbers (Keevash, Mubayi, Sudakov, Verstraëte, 2007).
Motivations ...

- The study of $\text{crx}_k(G)$ can be classified as a “cycles through specified vertices” type problem.
- The study of rainbow subgraphs in coloured graphs is also very important, e.g., anti-Ramsey numbers (Erdős, Simonovits, Sós, 1973), and rainbow Turán numbers (Keevash, Mubayi, Sudakov, Verstraëte, 2007). For both parameters, the case of rainbow cycles is significantly interesting.
Motivations …

- The study of $crx_k(G)$ can be classified as a “cycles through specified vertices” type problem.
- The study of rainbow subgraphs in coloured graphs is also very important, e.g., anti-Ramsey numbers (Erdős, Simonovits, Sós, 1973), and rainbow Turán numbers (Keevash, Mubayi, Sudakov, Verstraëte, 2007). For both parameters, the case of rainbow cycles is significantly interesting.
- An edge-coloured $K_n$ is $b$-bounded if no colour occurs more than $b = b(n)$ times.
Motivations …

- The study of $\text{crx}_k(G)$ can be classified as a “cycles through specified vertices” type problem.

- The study of rainbow subgraphs in coloured graphs is also very important, e.g., anti-Ramsey numbers (Erdős, Simonovits, Sós, 1973), and rainbow Turán numbers (Keevash, Mubayi, Sudakov, Verstraëte, 2007). For both parameters, the case of rainbow cycles is significantly interesting.

- An edge-coloured $K_n$ is *b-bounded* if no colour occurs more than $b = b(n)$ times. Erdős, Nešetřil, Rödl (1983) asked: *How large can $b$ be so that any $b$-bounded $K_n$ contains a rainbow Hamilton cycle?*
Motivations …

- The study of $crx_k(G)$ can be classified as a “cycles through specified vertices” type problem.

- The study of rainbow subgraphs in coloured graphs is also very important, e.g., anti-Ramsey numbers (Erdős, Simonovits, Sós, 1973), and rainbow Turán numbers (Keevash, Mubayi, Sudakov, Verstraëte, 2007). For both parameters, the case of rainbow cycles is significantly interesting.

- An edge-coloured $K_n$ is $b$-bounded if no colour occurs more than $b = b(n)$ times. Erdős, Nešetřil, Rödl (1983) asked: How large can $b$ be so that any $b$-bounded $K_n$ contains a rainbow Hamilton cycle? Hahn and Thomassen (1986) conjectured: $b$ can be linear in $n$. Settled by Albert, Frieze, Reed (1995).
Motivations …

- The study of $\text{crx}_k(G)$ can be classified as a “cycles through specified vertices” type problem.
- The study of rainbow subgraphs in coloured graphs is also very important, e.g., anti-Ramsey numbers (Erdős, Simonovits, Sós, 1973), and rainbow Turán numbers (Keevash, Mubayi, Sudakov, Verstraëte, 2007). For both parameters, the case of rainbow cycles is significantly interesting.
- An edge-coloured $K_n$ is $b$-bounded if no colour occurs more than $b = b(n)$ times. Erdős, Nešetřil, Rödl (1983) asked: How large can $b$ be so that any $b$-bounded $K_n$ contains a rainbow Hamilton cycle? Hahn and Thomassen (1986) conjectured: $b$ can be linear in $n$. Settled by Albert, Frieze, Reed (1995).
- Many more related problems and results …
Application: A certain country has various transport modes between certain pairs of cities. A travelling salesman wishes to visit $k$ designated cities, in no particular order, and return to his originating city. He can travel via other cities, but he does not wish to visit any city, or use the same mode of transport, more than once. How few transport modes are needed so that this is possible for any choice of $k$ cities? The answer is precisely $crx_k(G)$. 
Application: A certain country has various transport modes between certain pairs of cities. A travelling salesman wishes to visit \( k \) designated cities, in no particular order, and return to his originating city. He can travel via other cities, but he does not wish to visit any city, or use the same mode of transport, more than once. How few transport modes are needed so that this is possible for any choice of \( k \) cities? The answer is precisely \( \text{crx}_k(G) \).

\( \text{crx}_k(G) \) is the “cycle version” of the rainbow index \( \text{rx}_k(G) \) (Chartrand, Okamoto, Zhang, 2010), i.e., \( \text{rx}_k(G) \) is the least number of colours needed to colour the edges of a connected graph \( G \) so that every \( k \) vertices lie in a rainbow tree.
Application: A certain country has various transport modes between certain pairs of cities. A travelling salesman wishes to visit $k$ designated cities, in no particular order, and return to his originating city. He can travel via other cities, but he does not wish to visit any city, or use the same mode of transport, more than once. How few transport modes are needed so that this is possible for any choice of $k$ cities? The answer is precisely $\text{crx}_k(G)$.

$\text{crx}_k(G)$ is the “cycle version” of the rainbow index $\text{rx}_k(G)$ (Chartrand, Okamoto, Zhang, 2010), i.e., $\text{rx}_k(G)$ is the least number of colours needed to colour the edges of a connected graph $G$ so that every $k$ vertices lie in a rainbow tree.

$3 \leq \text{girth}(G) \leq \text{crx}_1(G) \leq \text{crx}_2(G) \leq \cdots \leq \text{crx}_k(G) \leq e(G)$. 
Application: A certain country has various transport modes between certain pairs of cities. A travelling salesman wishes to visit \( k \) designated cities, in no particular order, and return to his originating city. He can travel via other cities, but he does not wish to visit any city, or use the same mode of transport, more than once. How few transport modes are needed so that this is possible for any choice of \( k \) cities? The answer is precisely \( \text{crx}_k(G) \).

\( \text{crx}_k(G) \) is the “cycle version” of the rainbow index \( \text{rx}_k(G) \) (Chartrand, Okamoto, Zhang, 2010), i.e., \( \text{rx}_k(G) \) is the least number of colours needed to colour the edges of a connected graph \( G \) so that every \( k \) vertices lie in a rainbow tree.

3 \leq \text{girth}(G) \leq \text{crx}_1(G) \leq \text{crx}_2(G) \leq \cdots \leq \text{crx}_k(G) \leq e(G).

\( G, H \in \mathcal{F}_k, H \subset G \) spanning subgraph \( \Rightarrow \text{crx}_k(G) \leq \text{crx}_k(H) \).
Proposition 1

(a) $\mathcal{F}_1$ is the family of all graphs such that, every vertex belongs to a 2-connected block in the block decomposition.

(b) $\mathcal{F}_2$ is the family of all 2-connected graphs.
General graphs

Proposition 1

(a) $\mathcal{F}_1$ is the family of all graphs such that, every vertex belongs to a 2-connected block in the block decomposition.

(b) $\mathcal{F}_2$ is the family of all 2-connected graphs.

Theorem 2 (L. 2017+)

Let $G$ be a graph of order $n \geq 3$.

(a) Let $G \in \mathcal{F}_1$. Then $crx_1(G) = e(G)$ if and only if $G = C_n$.

(b) Let $G \in \mathcal{F}_2$. Then $crx_2(G) = e(G)$ if and only if $G$ is minimally 2-connected.

(c) Let $G \in \mathcal{F}_n$ (i.e., $G$ is Hamiltonian), and $1 \leq k \leq n$. Then $crx_k(G) = e(G)$ if and only if $G = C_n$.
Sketch proof of (b).

(⇒): Easy.
Sketch proof of (b).

(⇒): Easy.

(⇐):

- Let $G$ be minimally 2-connected, and suppose we have an edge-colouring with less than $e(G)$ colours, say $e, e' \in E(G)$ have the same colour.
Sketch proof of (b).

(⇒): Easy.

(⇐):

- Let $G$ be minimally 2-connected, and suppose we have an edge-colouring with less than $e(G)$ colours, say $e, e' \in E(G)$ have the same colour.
- Want to show that there are two vertices $x, y$ such that any cycle containing them must use both $e$ and $e'$. 

Henry Liu

Rainbow cycles through specified vertices
Sketch proof of (b).

(⇒): Easy.

(⇐):

- Let $G$ be minimally 2-connected, and suppose we have an edge-colouring with less than $e(G)$ colours, say $e, e' \in E(G)$ have the same colour.
- Want to show that there are two vertices $x, y$ such that any cycle containing them must use both $e$ and $e'$.
- Block decomposition of $G - e$ is a chain of blocks.
Sketch proof of (b).

(⇒): Easy.

(⇐):

- Let $G$ be minimally 2-connected, and suppose we have an edge-colouring with less than $e(G)$ colours, say $e, e' \in E(G)$ have the same colour.

- Want to show that there are two vertices $x, y$ such that any cycle containing them must use both $e$ and $e'$.

- Block decomposition of $G - e$ is a chain of blocks.

- Can assume $e'$ lies in a 2-connected block $B$. 
Sketch proof of (b).

$(\Rightarrow)$: Easy.

$(\Leftarrow)$:

- Let $G$ be minimally 2-connected, and suppose we have an edge-colouring with less than $e(G)$ colours, say $e, e' \in E(G)$ have the same colour.

- Want to show that there are two vertices $x, y$ such that any cycle containing them must use both $e$ and $e'$.

- Block decomposition of $G - e$ is a chain of blocks.

- Can assume $e'$ lies in a 2-connected block $B$.

- Then $B - e'$ has a similar structure. Can easily find $x, y$. □
\[ k = n - 1? \]
$k = n - 1$?

**Theorem 3 (L. 2017+)**

(a) If $P_{10} = \text{Petersen graph}$, then $\text{crx}_9(P_{10}) = e(P_{10}) = 15$.

(b) If $G$ is a hypohamiltonian graph of order $n$, where $11 \leq n \leq 17$, then $\text{crx}_{n-1}(G) < e(G)$. 
Sketch proof of (b).

Aldred, McKay, Wormald (1995) showed that all hypohamiltonian graphs of order at most 17 are:

\[ P_{10}, H_{13}, H_{15}, H_{16}, H'_{16}, H^1_{16}, H^2_{16} \]
Sketch proof of (b).

Aldred, McKay, Wormald (1995) showed that all hypohamiltonian graphs of order at most 17 are:

\[ P_{10}, H_{13}, H_{15} \]

\[ H_{16}, H'_{16}, H^1_{16}, H^2_{16} \]
Sketch proof of (b).

Aldred, McKay, Wormald (1995) showed that all hypohamiltonian graphs of order at most 17 are:

Easy to check that for \( G \in \{ H_{13}, H_{15}, H_{16}, H'_{16} \} \), \( G - v \) contains a Hamilton cycle not using both red edges, for all \( v \in V(G) \). □
Problem 4

Let $3 \leq k < n$. Characterise the graphs $G \in \mathcal{F}_k$ of order $n$ with $\text{crx}_k(G) = e(G)$.
Problem 4

Let $3 \leq k < n$. Characterise the graphs $G \in \mathcal{F}_k$ of order $n$ with $\text{crx}_k(G) = e(G)$. In particular, when $k = n - 1$, does there exist $G$ such that $\text{crx}_{n-1}(G) = e(G)$, other than $G = C_n$, or $n = 10$ and $G = Petersen$ graph?
For $n \geq 3$, the wheel $W_n = C_n + v$. 
For $n \geq 3$, the wheel $W_n = C_n + v$. $crx_k(W_n)$ exists for all $1 \leq k \leq n + 1$ since $W_n$ is Hamiltonian.
For $n \geq 3$, the wheel $W_n = C_n + v$. $\text{crx}_k(W_n)$ exists for all $1 \leq k \leq n + 1$ since $W_n$ is Hamiltonian.

**Theorem 5 (L. 2017+)**

(a) $\text{crx}_1(W_n) = 3$ for $n \geq 3$.
(b) $\text{crx}_2(W_3) = 3$, and $\text{crx}_2(W_n) = \lceil \frac{n}{2} \rceil + 2$ for $n \geq 4$.
(c) $\text{crx}_3(W_n) = \begin{cases} n & \text{if } 3 \leq n \leq 7, \\ n - 1 & \text{if } 8 \leq n \leq 11, \\ n - 2 & \text{if } n \geq 12. \end{cases}$
(d) For $k \geq 4$ and $n + 1 \geq k$, we have

$$crx_k(W_n) = \begin{cases} 
  n + 1 & \text{if } n < 2k, \\
  n & \text{if } n \geq 2k.
\end{cases}$$
(d) For $k \geq 4$ and $n + 1 \geq k$, we have

$$\text{crx}_k(W_n) = \begin{cases} 
  n + 1 & \text{if } n < 2k, \\
  n & \text{if } n \geq 2k.
\end{cases}$$

Sketch proof of (d).

- Obviously $\text{crx}_k(W_n) \leq n + 1$ since $W_n$ is Hamiltonian.
For $k \geq 4$ and $n + 1 \geq k$, we have

$$crx_k(W_n) = \begin{cases} 
    n + 1 & \text{if } n < 2k, \\
    n & \text{if } n \geq 2k.
\end{cases}$$

Sketch proof of (d).

- Obviously $crx_k(W_n) \leq n + 1$ since $W_n$ is Hamiltonian.
- For $n \geq 2k$, not hard to define an edge-colouring which gives $crx_k(W_n) \leq n.$
(d) For $k \geq 4$ and $n + 1 \geq k$, we have

$$crx_k(W_n) = \begin{cases} 
  n + 1 & \text{if } n < 2k, \\
  n & \text{if } n \geq 2k.
\end{cases}$$

Sketch proof of (d).

- Obviously $crx_k(W_n) \leq n + 1$ since $W_n$ is Hamiltonian.
- For $n \geq 2k$, not hard to define an edge-colouring which gives $crx_k(W_n) \leq n$.
- $crx_k(W_n) \geq n$ for all $n \geq k + 1$: If we use $\leq n - 1$ colours in an edge-colouring, then $\exists e, e' \in E(C_n)$ with the same colour. Pick $S$ with $|S| = k$ containing the end-vertices of $e, e'$. Then no rainbow cycle can contain $S$. 

Henry Liu
Rainbow cycles through specified vertices
\[ \text{crx}_k(W_n) \geq n + 1 \text{ for all } n < 2k: \]
\[ \text{crx}_k(W_n) \geq n + 1 \text{ for all } n < 2k: \text{ Suppose we have a good edge-colouring with } n \text{ colours.} \]
\[ \text{cr}_{k}(W_n) \geq n + 1 \text{ for all } n < 2k: \] Suppose we have a good edge-colouring with \( n \) colours. The \( C_n \) must be rainbow coloured.
- \( \text{crx}_k(W_n) \geq n + 1 \) for all \( n < 2k \): Suppose we have a good edge-colouring with \( n \) colours. The \( C_n \) must be rainbow coloured. We consider cycles \( C \) containing \( v \) of two types – either \( |V(C)| \geq \lceil \frac{n}{2} \rceil + 2 \) or not.
\[ \text{crx}_k(W_n) \geq n + 1 \text{ for all } n < 2k: \] Suppose we have a good edge-colouring with \( n \) colours. The \( C_n \) must be rainbow coloured. We consider cycles \( C \) containing \( v \) of two types – either \( |V(C)| \geq \lceil \frac{n}{2} \rceil + 2 \) or not. We can choose a set \( S \) of \( k \) vertices containing \( v \) such that, no rainbow cycle of either type can contain \( S \), a contradiction. □
Proposition 6 (L. 2017+)

\( crx_1(K_n) = crx_2(K_n) = 3 \) for \( n \geq 3 \).
Complete, complete bipartite and multipartite graphs

Proposition 6 (L. 2017+)

\[ \text{cr}_1(K_n) = \text{cr}_2(K_n) = 3 \text{ for } n \geq 3. \]

Proof.

Suffices to show: \( \text{cr}_2(K_n) \leq 3 \). Use induction on \( n \).
Proposition 6 (L. 2017+)

\[ \text{crx}_1(K_n) = \text{crx}_2(K_n) = 3 \text{ for } n \geq 3. \]

**Proof.**
Suffices to show: \( \text{crx}_2(K_n) \leq 3 \). Use induction on \( n \).

\( n = 3 \): Rainbow colour \( K_3 \).
Complete, complete bipartite and multipartite graphs

Proposition 6 (L. 2017+)

\[ \text{cr}_1(K_n) = \text{cr}_2(K_n) = 3 \quad \text{for} \quad n \geq 3. \]

Proof.

Suffices to show: \( \text{cr}_2(K_n) \leq 3 \). Use induction on \( n \).

\( n = 3 \): Rainbow colour \( K_3 \).

\( n \geq 4 \), even:

Henry Liu Rainbow cycles through specified vertices
Proposition 6 (L. 2017+)  
\( \text{cr}_1(K_n) = \text{cr}_2(K_n) = 3 \ for \ n \geq 3. \)

Proof.  
Suffices to show: \( \text{cr}_2(K_n) \leq 3 \). Use induction on \( n \).  
\( n = 3 \): Rainbow colour \( K_3 \).  
\( n \geq 4 \), even:

\[ \begin{array}{cccccccccc}
\text{......} & \text{......} \end{array} \]

\( n \geq 4 \), odd: Similar. \( \square \)
Proposition 6 (L. 2017+)
\[ \text{cr}_1(K_n) = \text{cr}_2(K_n) = 3 \text{ for } n \geq 3. \]

Proof.
Suffices to show: \( \text{cr}_2(K_n) \leq 3 \). Use induction on \( n \).
\( n = 3 \): Rainbow colour \( K_3 \).
\( n \geq 4 \), even:

\[
\begin{array}{c}
\bullet & \bullet \\
\end{array}
\]
Proposition 6 (L. 2017+)

\[ crx_1(K_n) = crx_2(K_n) = 3 \text{ for } n \geq 3. \]

Proof.
Suffices to show: \( crx_2(K_n) \leq 3 \). Use induction on \( n \).

\( n = 3 \): Rainbow colour \( K_3 \).

\( n \geq 4 \), even:

\[ \ldots \]

\( n \geq 4 \) odd: Similar. \( \square \)
Theorem 7 (L. 2017+)

For $k \geq 3$, $\text{cr}_k(K_n) = 2k - 1$ for $n \geq N(k)$ sufficiently large.
Theorem 7 (L. 2017+)  

For $k \geq 3$, $crx_k(K_n) = 2k - 1$ for $n \geq N(k)$ sufficiently large.

Proof.
Theorem 7 (L. 2017+)

For $k \geq 3$, $crx_k(K_n) = 2k - 1$ for $n \geq N(k)$ sufficiently large.

Proof.

($\geq$): Let $n \geq R_{2k-2}(k)$, the Ramsey number for $2k - 2$ $K_k$'s.
Theorem 7 (L. 2017+)

For $k \geq 3$, $crx_k(K_n) = 2k - 1$ for $n \geq N(k)$ sufficiently large.

Proof.

($\geq$): Let $n \geq R_{2k-2}(k)$, the Ramsey number for $2k - 2$ $K_k$'s.

$\Rightarrow$ If $E(K_n)$ is $r$-coloured, $r \leq 2k - 2$, $\exists$ monochromatic $K_k$ on some $\{v_1, \ldots, v_k\}$. 
Theorem 7 (L. 2017+) 

For $k \geq 3$, $cr_{x_k}(K_n) = 2k - 1$ for $n \geq N(k)$ sufficiently large.

Proof.

($\geq$): Let $n \geq R_{2k-2}(k)$, the Ramsey number for $2k - 2$ $K_k$'s.

$\Rightarrow$ If $E(K_n)$ is $r$-coloured, $r \leq 2k - 2$, $\exists$ monochromatic $K_k$ on some $\{v_1, \ldots, v_k\}$.

$\Rightarrow$ no rainbow cycle $\supset \{v_1, \ldots, v_k\}$. 
Theorem 7 (L. 2017+)

For $k \geq 3$, $\text{cr}_{x_k}(K_n) = 2k - 1$ for $n \geq N(k)$ sufficiently large.

Proof.

($\geq$): Let $n \geq R_{2k-2}(k)$, the Ramsey number for $2k - 2$ $K_k$’s.

$\Rightarrow$ If $E(K_n)$ is $r$-coloured, $r \leq 2k - 2$, $\exists$ monochromatic $K_k$ on some $\{v_1, \ldots, v_k\}$.

$\Rightarrow$ no rainbow cycle $\supset\{v_1, \ldots, v_k\}$.

$\Rightarrow$ $\text{cr}_{x_k}(K_n) \geq 2k - 1$. 
(≤): Randomly \((2k - 1)\)-colour \(E(K_n)\).
\((\leq)\): Randomly \((2k - 1)\)-colour \(E(K_n)\).

For \(A \subset V(K_n), |A| = k\), let \(E_A = \text{event that no rainbow cycle } \supset A\). Done if \(P(E_A) = o(n^{-k})\), since then \(P(\bigcup_A E_A) < 1\).
$(\leq)$: Randomly $(2k-1)$-colour $E(K_n)$.

For $A \subset V(K_n)$, $|A| = k$, let $E_A = \text{event that no rainbow cycle } \supset A$. Done if $\mathbb{P}(E_A) = o(n^{-k})$, since then $\mathbb{P}(\bigcup_A E_A) < 1$. 

![Diagram of complete multipartite graph]

$A \bigcup k$

$B_1 \bigcup (k-1)$ \hspace{1cm} $B_2 \bigcup (k-1)$ \hspace{1cm} $\cdots$ \hspace{1cm} $(k-1) \bigcup B_t$
(≤): Randomly $(2k - 1)$-colour $E(K_n)$.

For $A \subseteq V(K_n)$, $\left| A \right| = k$, let $E_A = \text{event that no rainbow cycle } \supset A$. Done if $\mathbb{P}(E_A) = o(n^{-k})$, since then $\mathbb{P}(\bigcup_A E_A) < 1$.

$E_A$ occurs $\Rightarrow$ no $A \cup B_i$ contains a rainbow cycle $\supset A$. 
(≤): Randomly $(2k - 1)$-colour $E(K_n)$.

For $A \subset V(K_n)$, $|A| = k$, let $E_A = \text{event that no rainbow cycle } \supset A$. Done if $\mathbb{P}(E_A) = o(n^{-k})$, since then $\mathbb{P}(\bigcup_A E_A) < 1$.

$E_A$ occurs $\Rightarrow$ no $A \cup B_i$ contains a rainbow cycle $\supset A$.

$\mathbb{P}(E_A) \leq d_k c^t (2k - 1)^{\binom{n-k}{2}} / (2k - 1)^{\binom{n}{2}} = o(n^{-k})$, where $d_k$ and $c < (2k - 1)^{k(k-1)}$ are constants.
$(\leq)$: Randomly $(2k - 1)$-colour $E(K_n)$.

For $A \subset V(K_n)$, $|A| = k$, let $E_A = \text{event that no rainbow cycle } \supset A$. Done if $\mathbb{P}(E_A) = o(n^{-k})$, since then $\mathbb{P}(\bigcup_A E_A) < 1$.

\[ E_A \text{ occurs } \Rightarrow \text{ no } A \cup B_i \text{ contains a rainbow cycle } \supset A. \]

\[ \mathbb{P}(E_A) \leq d_k c^t (2k - 1)^{\binom{n-k}{2}} / (2k - 1)^{\binom{n}{2}} = o(n^{-k}), \text{ where } d_k \text{ and } c < (2k - 1)^{k(k-1)} \text{ are constants } \Rightarrow \text{crx}_k(K_n) \leq 2k - 1. \]
Theorem 8 (L. 2017+)

(a) For $k \geq 3$, $\text{cr}_{x_k}(K_{n,n}) = 2k$ for $n \geq N(k)$ sufficiently large.

(b) For $k, t \geq 2$, $\text{cr}_{x_k}(K_{t \times n}) = 2k$ for $n \geq N(k, t)$ sufficiently large.
Theorem 8 (L. 2017+)

(a) For $k \geq 3$, $\text{crx}_k(K_{n,n}) = 2k$ for $n \geq N(k)$ sufficiently large.

(b) For $k, t \geq 2$, $\text{crx}_k(K_t \times n) = 2k$ for $n \geq N(k, t)$ sufficiently large.

Proof.

($\geq$): Easy; consider $k$ vertices in one class.
Theorem 8 (L. 2017+)

(a) For $k \geq 3$, $\text{crx}_k(K_{n,n}) = 2k$ for $n \geq N(k)$ sufficiently large.
(b) For $k, t \geq 2$, $\text{crx}_k(K_{t \times n}) = 2k$ for $n \geq N(k, t)$ sufficiently large.

Proof.

($\geq$): Easy; consider $k$ vertices in one class.

($\leq$): Similar random method as in Theorem 7. $\Box$
Theorem 8 (L. 2017+)

(a) For $k \geq 3$, $crx_k(K_{n,n}) = 2k$ for $n \geq N(k)$ sufficiently large.
(b) For $k, t \geq 2$, $crx_k(K_{t \times n}) = 2k$ for $n \geq N(k,t)$ sufficiently large.

Proof.

($\geq$): Easy; consider $k$ vertices in one class.
($\leq$): Similar random method as in Theorem 7. $\Box$

Problem 9

What is $crx_k(K_{m,n})$ for $1 \leq k \leq m \leq n$?
Discrete Cube

Recall: The *discrete cube* $Q_n$ consists of $2^n$ vertices labelled by all $(0, 1)$-vectors of length $n$, and $x \sim y$ iff $x$ and $y$ differ in exactly one coordinate.
Recall: The *discrete cube* $Q_n$ consists of $2^n$ vertices labelled by all $(0,1)$-vectors of length $n$, and $x \sim y$ iff $x$ and $y$ differ in exactly one coordinate. e.g., $Q_1 \cong K_2$ and $Q_2 \cong C_4$. 
Recall: The *discrete cube* $Q_n$ consists of $2^n$ vertices labelled by all $(0, 1)$-vectors of length $n$, and $x \sim y$ iff $x$ and $y$ differ in exactly one coordinate. e.g., $Q_1 \cong K_2$ and $Q_2 \cong C_4$. 
Aim: To determine $crx_k(Q_n)$.
Aim: To determine $crx_k(Q_n)$.
Related results:
Aim: To determine $crx_k(Q_n)$.

Related results:

- Faudree, Gyárfás, Lesniak, Schelp (1993) proved that for $n \geq 4$, $n \neq 5$, there exists an edge-colouring of $Q_n$, using $n$ colours, such that every $C_4$ is rainbow.
Aim: To determine $crx_k(Q_n)$.

Related results:

- Faudree, Gyárfás, Lesniak, Schelp (1993) proved that for $n \geq 4$, $n \neq 5$, there exists an edge-colouring of $Q_n$, using $n$ colours, such that every $C_4$ is rainbow.

- Mubayi and Stading (2013) proved that for $\ell \equiv 0 \pmod{4}$, there exists an edge-colouring of $Q_n$ with $\Theta_n(n^{\ell/4})$ colours such that, every copy of $C_\ell$ is rainbow, and moreover, $\Theta_n(n^{\ell/4})$ colours are also necessary.
Aim: To determine $crx_k(Q_n)$.

Related results:

- Faudree, Gyárfás, Lesniak, Schelp (1993) proved that for $n \geq 4$, $n \neq 5$, there exists an edge-colouring of $Q_n$, using $n$ colours, such that every $C_4$ is rainbow.

- Mubayi and Stading (2013) proved that for $\ell \equiv 0 \pmod{4}$, there exists an edge-colouring of $Q_n$ with $\Theta_n(n^{\ell/4})$ colours such that, every copy of $C_\ell$ is rainbow, and moreover, $\Theta_n(n^{\ell/4})$ colours are also necessary.

- Many others ...
Theorem 10 (L. 2017+)

For $n \geq 2,$
Theorem 10 (L. 2017+)

For $n \geq 2$,

(a) $\text{cr}_{x_1}(Q_n) = 4$, 

(b) $\text{cr}_{x_2}(Q_n) = \text{cr}_{x_3}(Q_n) = 2$, 

(c) $\text{cr}_{x_k}(Q_n) = 2n$ for $2n - 1 \leq k \leq 2n$. 

Proof of (b).

$\text{cr}_{x_2}(Q_n) \geq 2n$: Shortest cycle containing $(0, \ldots, 0)$ and $(1, \ldots, 1)$ has length $2n$. 

Henry Liu
Rainbow cycles through specified vertices
Theorem 10 (L. 2017+)

For $n \geq 2$,

- (a) $crx_1(Q_n) = 4$,
- (b) $crx_2(Q_n) = crx_3(Q_n) = 2n$, 

Proof of (b).

$crx_2(Q_n) \geq 2n$: Shortest cycle containing $(0, \ldots, 0)$ and $(1, \ldots, 1)$ has length $2n$. 
Theorem 10 (L. 2017+)

For $n \geq 2$,
(a) $\text{crx}_1(Q_n) = 4$,
(b) $\text{crx}_2(Q_n) = \text{crx}_3(Q_n) = 2n$,
(c) $\text{crx}_k(Q_n) = 2^n$ for $2^{n-1} \leq k \leq 2^n$. 

Proof of (b).
$\text{crx}_2(Q_n) \geq 2n$: Shortest cycle containing $(0, \ldots, 0)$ and $(1, \ldots, 1)$ has length $2^n$. 

Henry Liu 
Rainbow cycles through specified vertices
Theorem 10 (L. 2017+)

For $n \geq 2$,

(a) $crx_1(Q_n) = 4$,
(b) $crx_2(Q_n) = crx_3(Q_n) = 2n$,
(c) $crx_k(Q_n) = 2^n$ for $2^{n-1} \leq k \leq 2^n$.

Proof of (b).

$crx_2(Q_n) \geq 2n$: Shortest cycle containing $(0, \ldots, 0)$ and $(1, \ldots, 1)$ has length $2n$. 
\[ \text{crx}_3(Q_n) \leq 2n: \text{ Induction on } n. \]
\[ \text{crx}_3(Q_n) \leq 2n: \text{ Induction on } n. \ n = 2: \text{ Rainbow colour } Q_2. \]
crx_3(Q_n) \leq 2n: Induction on n. n = 2: Rainbow colour Q_2.

n \geq 3:
$crx_3(Q_n) \leq 2n$: Induction on $n$. $n = 2$: Rainbow colour $Q_2$.

$n \geq 3$:

Each $Q_{n-1}$ coloured with colours $1, \ldots, 2n - 2$. 

$Q_{n-1}$ $Q_{n-1}$

$u$ $u'$
crx$_3(Q_n) \leq 2n$: Induction on $n$. $n = 2$: Rainbow colour $Q_2$.

$n \geq 3$:

Each $Q_{n-1}$ coloured with colours $1, \ldots, 2n - 2$. Colour $uu'$ with colour $2n - 1$ if $\sum_{i<n} u_i = \sum_{i<n} u'_i$ is odd, and with colour $2n$ if even.
\[ \text{crx}_3(Q_n) \leq 2n: \text{ Induction on } n. \ n = 2: \text{ Rainbow colour } Q_2. \]

\[ n \geq 3: \]

Each \( Q_{n-1} \) coloured with colours 1, \ldots, 2n – 2. Colour \( uu' \) with colour 2n – 1 if \( \sum_{i<n} u_i = \sum_{i<n} u'_i \) is odd, and with colour 2n if even. Easy to check that this is a good colouring for \( Q_n \).  \( \square \)
Theorem 11 (L. 2017+)

Let $k \geq 4$ and $n \geq 4k^2$. Then there exist constants $c_k, C_k > 0$ (depending only on $k$) such that

$$c_k n \leq \text{crx}_k(Q_n) \leq C_k n$$

Thus, we have $\text{crx}_k(Q_n) = \Theta_n(n)$. 
Sketch of proof.

Lower bound.
Sketch of proof.

Lower bound.

- We prove that $\text{cr}x_k(Q_n) > \frac{kn}{2}$ for $n \geq 4k^2$. We will find $k$ vertices in $Q_n$ such that every pair is at distance $> \frac{n}{2}$.
Sketch of proof.

Lower bound.

- We prove that \( crx_k(Q_n) > \frac{kn}{2} \) for \( n \geq 4k^2 \). We will find \( k \) vertices in \( Q_n \) such that every pair is at distance \( > \frac{n}{2} \).
- Recall that a Hadamard matrix is a \((-1, 1)\) matrix where every two column vectors are orthogonal, i.e., number of agreeing coordinates \( = \) number of differing coordinates.
Sketch of proof.

Lower bound.

- We prove that \( \text{cr}_k(Q_n) > \frac{kn}{2} \) for \( n \geq 4k^2 \). We will find \( k \) vertices in \( Q_n \) such that every pair is at distance \( > \frac{n}{2} \).
- Recall that a Hadamard matrix is a \((-1, 1)\) matrix where every two column vectors are orthogonal, i.e., number of agreeing coordinates = number of differing coordinates.
- Let \( k' \) be the smallest power of 2 with \( k' \geq k \), and \( H_{k'} \) be a \( k' \times k' \) Hadamard matrix (exists by Sylvester’s construction).
Sketch of proof.

Lower bound.

- We prove that $\text{cr}_k(Q_n) > \frac{kn}{2}$ for $n \geq 4k^2$. We will find $k$ vertices in $Q_n$ such that every pair is at distance $> \frac{n}{2}$.
- Recall that a Hadamard matrix is a $(-1, 1)$ matrix where every two column vectors are orthogonal, i.e., number of agreeing coordinates $=$ number of differing coordinates.
- Let $k'$ be the smallest power of 2 with $k' \geq k$, and $H_{k'}$ be a $k' \times k'$ Hadamard matrix (exists by Sylvester’s construction).
- Delete the all 1’s row, replace all $-1$ with 0, and take $k$ of the column $(k' - 1)$-vectors.
Sketch of proof.

Lower bound.

- We prove that $\text{cr}_k(Q_n) > \frac{kn}{2}$ for $n \geq 4k^2$. We will find $k$ vertices in $Q_n$ such that every pair is at distance $> \frac{n}{2}$.
- Recall that a Hadamard matrix is a $(-1, 1)$ matrix where every two column vectors are orthogonal, i.e., number of agreeing coordinates = number of differing coordinates.
- Let $k'$ be the smallest power of 2 with $k' \geq k$, and $H_{k'}$ be a $k' \times k'$ Hadamard matrix (exists by Sylvester’s construction).
- Delete the all 1’s row, replace all $-1$ with 0, and take $k$ of the column $(k' - 1)$-vectors.
- “Blow up” the $(k' - 1)$-vectors to $n$-vectors.
Upper bound.
Upper bound.

▶ We will prove a stronger assertion: *For \( n \geq 11k \) and \( C_k = 2^{2k-1} \), there is an edge-colouring with at most \( C_k n \) colours such that, for any \( S = (v_1, \ldots, v_k) \in V(Q_n)^k \), there exists a closed walk containing \( S \) such that if \( P_i \) connects \( v_i \) and \( v_{i+1} \), then \( P_i \) has length at least 2 or is trivial (if \( v_i = v_{i+1} \)), with the \( P_i \) disjoint.*
Upper bound.

- We will prove a stronger assertion: For \( n \geq 11k \) and \( C_k = 2^{22k-1} \), there is an edge-colouring with at most \( C_k n \) colours such that, for any \( S = (v_1, \ldots, v_k) \in V(Q_n)^k \), there exists a closed walk containing \( S \) such that if \( P_i \) connects \( v_i \) and \( v_{i+1} \), then \( P_i \) has length at least 2 or is trivial (if \( v_i = v_{i+1} \)), with the \( P_i \) disjoint.

- Recall: A graph is \textit{k-linked} if it has at least \( 2k \) vertices, and for any sequence \( s_1, \ldots, s_k, t_1, \ldots, t_k \) of distinct vertices, there are disjoint paths \( P_1, \ldots, P_k \) where \( P_i \) connects \( s_i \) and \( t_i \).
Upper bound.

- We will prove a stronger assertion: For \( n \geq 11k \) and \( C_k = 2^{22k-1} \), there is an edge-colouring with at most \( C_k n \) colours such that, for any \( S = (v_1, \ldots, v_k) \in V(Q_n)^k \), there exists a closed walk containing \( S \) such that if \( P_i \) connects \( v_i \) and \( v_{i+1} \), then \( P_i \) has length at least 2 or is trivial (if \( v_i = v_{i+1} \)), with the \( P_i \) disjoint.

- Recall: A graph is \( k\)-linked if it has at least \( 2k \) vertices, and for any sequence \( s_1, \ldots, s_k, t_1, \ldots, t_k \) of distinct vertices, there are disjoint paths \( P_1, \ldots, P_k \) where \( P_i \) connects \( s_i \) and \( t_i \).

- Thomas and Wollan (2005) proved that if \( G \) is \( 10k \)-connected, then \( G \) is \( k \)-linked.
Upper bound.

- We will prove a stronger assertion: For \( n \geq 11k \) and \( C_k = 2^{22k-1} \), there is an edge-colouring with at most \( C_k n \) colours such that, for any \( S = (v_1, \ldots, v_k) \in V(Q_n)^k \), there exists a closed walk containing \( S \) such that if \( P_i \) connects \( v_i \) and \( v_{i+1} \), then \( P_i \) has length at least 2 or is trivial (if \( v_i = v_{i+1} \)), with the \( P_i \) disjoint.

- Recall: A graph is \( k \)-linked if it has at least \( 2k \) vertices, and for any sequence \( s_1, \ldots, s_k, t_1, \ldots, t_k \) of distinct vertices, there are disjoint paths \( P_1, \ldots, P_k \) where \( P_i \) connects \( s_i \) and \( t_i \).

- Thomas and Wollan (2005) proved that if \( G \) is \( 10k \)-connected, then \( G \) is \( k \)-linked.

- Using this, we can show that for \( S \in V(Q_n)^k \), there exists such a closed walk in \( Q_n \) containing \( S \).
Upper bound.

- We will prove a stronger assertion: For $n \geq 11k$ and $C_k = 2^{22k-1}$, there is an edge-colouring with at most $C_k n$ colours such that, for any $S = (v_1, \ldots, v_k) \in V(Q_n)^k$, there exists a closed walk containing $S$ such that if $P_i$ connects $v_i$ and $v_{i+1}$, then $P_i$ has length at least 2 or is trivial (if $v_i = v_{i+1}$), with the $P_i$ disjoint.

- Recall: A graph is $k$-linked if it has at least $2k$ vertices, and for any sequence $s_1, \ldots, s_k, t_1, \ldots, t_k$ of distinct vertices, there are disjoint paths $P_1, \ldots, P_k$ where $P_i$ connects $s_i$ and $t_i$.

- Thomas and Wollan (2005) proved that if $G$ is 10$k$-connected, then $G$ is $k$-linked.

- Using this, we can show that for $S \in V(Q_n)^k$, there exists such a closed walk in $Q_n$ containing $S$.

- For $n = 11ak$, $Q_n = Q_{11(a-1)k} \oplus Q_{11k}$. Use induction on $a$. \qed
We proved Theorem 11 with $c_k = \frac{k}{2}$ and $C_k = 2^{2k-1}$. 

Problem 12

For $n \geq 4$, determine $c_{rk}(Q_n)$ for every $4 \leq k < 2^{n-1}$. Or, improve the constants $c_k$, $C_k$ in Theorem 11.
We proved Theorem 11 with $c_k = \frac{k}{2}$ and $C_k = 2^{22k-1}$.

**Problem 12**

For $n \geq 4$, determine $crx_k(Q_n)$ for every $4 \leq k < 2^{n-1}$. Or, improve the constants $c_k, C_k$ in Theorem 11.
Thank you!