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Some algorithms

® The shortest path algorithms——Dijkstra (O (n?
) ) , Bellman-Ford ( Negative weight edge )
and Floyd (O (n3) )

The time complexity——0Di jkstra

(1) Adjacency matrix 0(n2)
(2) Adjacency list and binary heap 0((m+n) log, n)
(3) Adjacency list and Fibonacci heap  0(mtnlog,n)

® The Minimum spanning tree algorithms——prim
(Adjacency matrix :O(n%)  Adjacency list:
O(mlog,n)) , kruskal and Sollin(Boruvka)
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® The matching algorithm - Hungarian
algorithm

® The network flow algorithm -——Ford-
Fulkerson

® The algorithms on other aspects such as
connedctivity, coloring, traversal, Cligue etc.
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The key point: the shortest path from the source v to
any vertex in S is not greater than the shortest path

from v to any vertex in U.
/a.



Set S
S={A}

S={A, C}

S={A, C, D}

Set U

U={B, C, D, E, F}

Update the distances from A to the vertices in U
A—-B=6 A—-C=3 A-D=5

A—other vertices=

Put the vertex C with the lowest weight into the set S.

U={B, D, E, F}

Update the distances from A to the vertices in U
A—-B=6 A—-D=5 A-E=T7

A—F=x

Put the vertex D with the lowest weight into the set S.
U={B, E, F}

Update the distances from A to the vertices in U
A—-B=6 A—-E=7 A—-F=13

Put the vertex B with the lowest weight into the set S.




Set S
S={A, B, C, D}

S={A, B, C, D, E}

S:{A’ B’ C’ D’ E’ F}

Set U

U={E, F}

Update the distances from A to the
vertices in U

A—-E=T7 A—-F=13

Put the vertex E with the lowest weight
into the set S.

U={F}

Update the distances from A to the
vertices in U

A—-F=12

Put the vertex F with the lowest weight
into the set S.

The set U is empty and the algorithm is
over.
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Floyd's Algorithm: For each pair of vertices u and v
In G, we see If there IS a vertex w such that the
sum of the distance from u to w and from w to v IS
shorter than the distance from u to v.

for(k=0;k<n; k++)
{
for(i=0;i<n;i++)
for(j=0;j<n;j++)
f(DO]O]>(DN][k]+DIK]ID)
{
D[][]=Dik]+DIK]0];

}




Some shortest paths
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wIntroduction to

CYCITC Ve

(edge) connectivity

® The concept of cyclic connectivity was proposed by

Tait in 1880.

® |t has appeared in some theories developed for

solving the Four Color Conj
€ The vertex connectivity and

ecture.
edge connectivity In

graph theory are often usec
reliability.

to measure network

€ The cyclic vertex (edge) connectivity is a kind of

conditional connectivity.
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The problem on a polynomial time algorithm for
determining the cyclic vertex (edge) connectivity of
a graph has been standing for many years.

The polynomial algorithms for determining the
cyclic edge connectivity of cubic graphs and k-
regular graphs had not been solved until a few
years ago.

It Is not known yet whether the problem to
determine the cyclic vertex connectivity of a graph

IS a P-problem.
w‘ e g 1h




Some results for cyclic edge connectivity

* In 2004, Dvorak et.al. gave an algorithm for
cyclic edge connectivity of cubic graphs, and the
time complexity of their algorithm was O(v? log,

V).

* In 2005, Lou and Wang gave an algorithm
determining the cyclic edge connectivity of k-
regular graphs, then the time complexity of the
algorithm was improved to O(k°v®) by Lou and

Liang in 2014.



* In 2008, Lou and Wang charactered all graphs
with infinite cyclic edge connectivity. (0(| V| |E|))




The cyclic edge connectivity of planar
graphs

Plummer, 1972

A planar 5-connected graph has a cyclic edge
connectivity of at most 13, while the planar 4-
connected graph has a cyclic edge connectivity of
any integer greater than or equal to 4.

In 2009, Lu Y gave an algorithm for cyclic
edge connectivity of planar graphs.(0(|V|4))



&)Some results for cyclic vertex
connectivity

* In 2016, we gave a polynomial algorithm for
cyclic vertex connectivity of cubic graphs.

O(Vl5/2)

* In 2017, we gave a random algorithm for
cyclic vertex connectivity of some graphs
satisfying some conditions.




Terminology:

A set S of vertices (edges) in G is a cyclic vertex (edge) cutset
if G — S is not connected and at least two components contain a
cycle respectively.

The cyclic vertex (edge) connectivity ck(G) is the cardinality of
a minimum cyclic vertex (edge)cutset in G. If no cyclic vertex
(edge) cutset exists, ck(G) (c(1)) is defined to be oo.
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Proposition 1 ([1] ) If k(G) = ck(G), then ck(G)< § (G) and ck(G)+ co.
Conversely, if G is a simple graph such that ck(G)# o and ck(G)< § (G) then
k(G) = ck(G).

Proposition 2 ([1]) (i) If p is a positive integer, the is a simple graph G’ such
that ck(G’) = oo and cA(G’) = p. (ii) If p<q are positive integers, there is a
simple graph H’ such that ck( H’) = p and cA(H’) = q. (iii) If p < q are positive
integers, there is a simple graph F’ such that ck(F’) = q and cA(F’) = p.

Theorem 3 Let G be a connected k-regular graph with girth g. If v(G)>2g(k-1),
then ck(G)<(k-2)g.

Theorem 4 Let G be a k-regular graph with girthg > 7, suppose that C is an

induced cycle in a connected component of G, then |[N(C)| = (k-2)g.

[1] Peroche B. On several sorts of connectivity[J]. Discrete mathematics, 1983,

46(3): 267-277.




Cubic graphs

The main idea of algorithm of cubic graphs is that:

we firstly find all induced cycles of length less than or
equal to 4(log,v + 1), and put these cycles into a set F.
Then for any two disjoint cycles in F, we find a vertex
cutset to separate them. Then the minimum vertex
cutset is the minimum cyclic vertex cutset, and the
cardinality of the minimum cyclic vertex cutset is cyclic
vertex connectivity ck(G). In Algorithm 1, the symbol s
denotes the Initial value of ck(G).




1. Use a breadth first search strategy to find a shortest cycle containing v for each vertex v in &, then we
can find the ginth g of G Jf 00V

2. Use a breadth first search strategy to find all induced cycles C containing edge ¢ for each edge ¢ € E{G)
such that [VIC)| = 4(logy v+ 1). Let C, be the set of all such cycles containing ¢ and let F = || g Co
[/ OO

3. IfviG)=4g—1,thens:=co,else s :=g; [/ O(1)

4. For any two different cycles Cy and G in F,wedo  Jff )
BEGIN

(4A) If VICy) nV(Cz) = @ and there is not such edge ¢ = (vy,v2), where vy € VIC;) and vz € VIC;),
then we can construct a new graph &' by contracting V(C) into a vertex x, V{C3) into a vertex y,
and deleting all parallel edges produced; /{ O(v)

(4B) Use the algorithm in [7]{5.3 The Dinitz .élu.lgj::nriTJlrl:l‘.ll to find a minimum cutset § -, which separates
x and y. § ., is also the minimum cutset separating Cy and C2 in G; [/ O(EW'/?) = 0(Y7)

(4C) s:=min{s [Sqlk  #O01)

END:;

a

5. Then ax((z) = 5 and is returned;
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The notations N.(a;) and T (ai) (T-tree) are
defined as:

No(@) = {a}, Nq(a) = {u| ua;€ E(Dg)}, #1 N(a) = {u|
u, €N_ (a), u¢ UJ:ONj(ai), ugS, uu € E(D,)-

cl4-1 .
T(a) = G[Uzq N,(a;)] — Es — E7, (0= i<c-1).



B 2-1 — N.(a;) HIHF

Ni(ag) ={vo: Ve}» Ny (ag) ={vi» Vs V3}
Nl(am):{vl’ Vy }’ N2 (am) = Q)’ Nl(an) =

{vs» V6} HINy(a,) = 0. g




Let G| L_Ji::,_ ! Ni(a;)] be an induced subgraph of G. Let E; be the set of edges whose ends are both in §.

For any vg € Npai). vy € Nlag) () < r)and vy # vy, if va € Npa{ag) NS0 < e, and vavy, vavg € ElG),
then we put the edge vovy into a set Er, of edges : if va € Ny o1la;) N 8, = r2, and vavy, vavg € EiG), then

:j]_l Nr':“r'}l -E; - ET.- s a

subgraph of ;. Then each vertex v € N, 1(a;) N 8 is adjacent to exactly one vy € Ny, (a;) such that ry is as

either the edge vavy or vavy belongs to the set E7, of edges. Then T(a;) = Gl

small as possible. Since €' is a minimum cycle in Dy, T'(a;) 15 a tree called T-rree.

Suppose a tree has 27 + 2% + 21 4 27 4 ... 4 2902 = 2¢8-T veertices and is fully contained in D, then the
tree is called a full-rree. Suppose a tree has 2% +29 429 421 422 4. 4 29093 = 29442 L | vertices contained
in I3y, then the tree is called a half-tree .




if v(G) = v(D,) =21 then we have
Cc <4(log, v + 1).

If D, contains a full-tree or two vertex-disjoint
half-trees, then we can get the conclusion of
this theorem.
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Figure 1: An example for a subgraph in G[V(D) U S] - E; Figure 2: A corresponding graph of Figure |




K-regular graphs

Algorithm 2 (for 4-regular graphs):

1. Use a breadth first search strategy to find a shortest cycle containing u for each vertex u in G, then we can get the
githgof G Jf (v

2. fvi@G) = 6g. then 5 .= 2g, else 5 := 00, [/ ON])

3. If g = 19, then 2 = 4log,(2v) + 7.

else z = 4log,(2v) + 42

4. Use a breadth first search strategy to find all induced cycles C containing edge e for each edge ¢ € E((7) such that
IV(C)| < z. Let C, be the set of all such cycles containing ¢ and let F = | e Cot Jf O0F)

5. For any two different cycles Cy and Cs in F, we do |/ o)
BEGIN

(5A) If ViCy)n VIC;) = O and there is no edge ¢ = (v, v4), where v; € V(C)) and v4 € V(C;), then we can
construct a new graph (;° by contracting ' into a vertex x, C; into a vertex v, and deleting all parallel edges
produced; f hv)

(5B) Use the algorithm in [5](5.3 The Dinitz Algorithm)! to find a minimum cutset § » which separates x and y.
§ 1, is also the minimum cutset separating C, and C; inG: [/ Q(EW!2) = O(v¥2)

(5C) s =min{s [S,/k Ol
END;

6. Then cx((7) = 5 and is returned;




Algorithm 3 (for k-regular graphs (k= 5)):

1. Use a breadth first search strategy to find a shortest cycle containing v for each vertex v in G, then we
can find the girth gof G; [/ D{’kvzj

2. Use a breadth first search strategy to find all induced cycles C containing edge ¢ for each e € E(G)
such that [V(C)| = 4log,_;[(k — 2] + 9k%. Let C, be the set of all such cycles containing ¢ and let
F=JwpeCe: [ OPKKH2)

3. fviG) = 2¢(k — 1), then s :=(k — 2)g, else s ;== 00y [/ O(1)

4. For any two different cycles Ciand C2 in F do O(kEK%)
BEGIN

(4A) If V(C1) N V(C2) = 0 and there is no such edge ¢ = (vy,v2), where vi € V(C1) and v2 € V(C2),
then we can construct a new graph G’ by contracting V(C) into a vertex x, V(C;) into a vertex y,

and deleting all parallel edges produced; // O(v)

(4B) Use the algorithm in [4](5.3 The Dinitz Algorithm)' to find a minimum cutset 5, which separates
x and y. § ., is also the minimum cutset separating Cy and C; in G, // O(EW?) = 03

(4C) s:=min{s, [Syl}:  JO(1)

END:
5. Then ck(G) = s and 1s returned:




Figure 3: A T-tree T(a;). Figure 4: 3g-8<c<3g-2.




(a) The first structure (b) The second structure (c) The third structure

Figure 7: Three structures that do not exist for ¢ < 3g -2 and g > 19.
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O level (z-10)/4-2 of T,

" level 207 T,
level 10 T,

level 0of T,

Figure 12: A similar structure.
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?JRandom Algorithms for cyclic edge connectivity of
some graphs

Algorithm 1 A random algorithm determining the cyclic edge connectivity of some graphs

Input: Graph G
Output: The cyclic edge connectivity cA(G) of G
1: We arbitrarily take an edge e = xy of G and do edge-contraction operation, 1.e., the two ends x and y of e are merged
into a new vertex z.
2: We repeatly do edge-contraction operation until only three vertices are left in G, and then take any two vertices in
them to do vertex-merging operation.
3: The set of edges between the two vertices left at last is the minimum cyclic edge cutset.
4: return The cardinality of minimum cyclic edge cutset.
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Figure 1: An example for the vertex-merging operation




Let £ (1 < i < n—3) denote the event that the edges in § are not selected and contracted in the i step. In the first step,
we arbitrarily take an edge of G and the probability that the selected edge is in cyclic edge cutset § is |§|/m < |S|/(&'n/2).
So we have that P,[=] = | — |[S]/(k'n/2). Suppose the first step has already occurred and graph G is changed into G'.
In the second step, we know that the minimum edge cut of G obtained after doing the edge-contraction operation of G
is an edge cut of G, and the cardinality of a minimum cut in G’ is at least £'. Hence there are n — 1 vertices and at least
k'(n — 1)/2 edges in the second step. We arbitranly take an edge of G’ and the probability that the selected edge 1s in
cyclic edge cutset § 1s |S|/[K'(n — 1)/2]. Hence we have that P, [s;]g;] = 1 — |S|/[K'(n — 1)/2]. In the ith step, the rest
vertices” number i1s 1 — i + 1 and the cardinality of minimum edge cut is at least &". So there are at least K'(n — i + 1)/2
edges in the ith step, if we arbitrarily take an edge to contract, then the probability that the selected edge is in § is
[51/[k'(n — i+ 1)/2]. Henl:e we have that P,[£i||"‘|j'=l] gil =2 1 - |S|/[K'(n—i+1)/2]. Inthe n — 3 step, similarly we
have that P [g, 3| |J. i E_I,] = 1 —|§|/(2k"). Finally, when three vertices are remained, we arbitrarily take two in the three
vertices to do vertex-merging operation. Since we have C‘§ methods to take. the edges between the last two vertices are
the minimum cyclic edge cutset with the probability of 1/ C%. So what is the probability that Algorithm 1 can correctly
find the cyclic edge connectivity of G? Let P denote the probability that Algorithm 1 can correctly find the cyclic edge

connectivity of G. Then,
1 3
= X ﬂ (2.1)
& i=

According to the formula Pr[|"‘|f=1 g = Prle] x Prlealei] x Prleslez noeg]-- - Prle:l [“‘f;;]] £i], we have that

n-3 n—
1 1 2151
_X.Pr i :3_
Cj [mg 3

-3
1| J’a"n—r+1}J

Lett = 2|5|/k’, then

= 28| 1 ¢ ( ¢
| ( )= 30 =)= —) (1= )

T km—-i+ 1)

i=1




Obviously, we have that | —¢/4 = 0,1e.,t < 4 and |S|/k" < 2. Therefore, if G satisfies the condition x'/k" < 2 (1e,
|5|/k" = &' /K’ < 2), then the algorithm 1 can be called.

Since the cardinality of minimum edge cut is less than or equal to that of minimum cyclic edge cutset, we have that
k' <|S|,1e.,t=2 So,

2<t<4 (2.2)

According to the range of 1, we discuss it.

e =2 Wehavethat P> ———
nin—1)

X

]
® JC I:Z., 3] We have that P = mf

xp 1s a positive constant.
r
Ty

* 1€ (3,4). Wehave that P> o —r — v —

. X 1s a positive constant.

Suppose that t = 2. Notice that P > 2/n” and Algorithm 1 may not be able to correctly find a minimum cyclic edge
cutset. Suppose we repeat Algorithm 1 n”/2 times and make independent random choices every time. According to the

formula P,[g; N &2] = P/lei] x Prlez]. in any of n”/2 times of attempts, the probability that a minimum cyclic edge
cutset cannot be correctly found is at most

(1— %)ﬂlf? < 1/e.
n




Machine learning algorithm——Adaboost:

Input: Data set D = {(x1, y1), (%2, ¥2), . . ., (X0 Vo) }:
Base learning algorithm L;
Number of learning rounds T.

Process:
1. D) =1/m. % Initialize the weight distribution
2. fort=1,,T:
3. hi=L(D, D;); % Train a learner ii; from D using distribution Dy
4, €= Pry.p, 5 I[h: (%)= yl; % Measure the error of h;
5. ife; = 0.5 then break
6. ag= ¥ In (1 - Ef}, % Determine the weight of
Dii) , [exp(—ay)if he(x;) = y;
7o a0 =B { R e O

Di{i)exp(—aryih: (*i)) 9, Update the distribution, where
! % Z; is a normalization factor which

% enables D¢, to be distribution
8. end

Output: H(x) = sign {ZLMt hg{.‘t‘})

Reference: #l#5 % >+ K& 7% pdf




The thought of the algorithm Adaboost

1.

First, the weight distribution D, of training data is
Initialized. each training sample is given the same
weight :w; (1< i< N)=1/N.

The weak classifiers are iteratively trained. If a training
data is misclassified by a weak classifier, then its
corresponding weight should be increased in
constructing the next training set used by the next weak
classifier. on the contrary, if a training data is classified
accurately , then its weight should be reduced.

Finally, the weak classifiers obtained by each training
are combined into a strong classifier. A weak classifier
with a lower error rate takes a larger weight.

B
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Figure 1 (From PRML)
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Error rate:
N
e =P(H/(x)=2y)= Z“';.-I(H: (%))
i=l

The weight of each weak classifier :

H'.
a; :lln{l_er I

-5
E; 4
L P..

-

Update the weight distribution of training samples:

_ D, @)exp(-ar,yif, (5)

z]’

Dy




 Combining these weak classifiers:
T

() = ) acH,(x)

t=1
* Symbol function Sign:

H(x) = sign(f(x))
T

= sign()_acH,(x))
t=1




Further Problems

whether the determination of the cyclic
vertex connectivity of graphs (k-regular
graphs) is an NP problem.

How to use the distributed algorithm and
the random algorithm to determine the
cyclic edge connectivity and the cyclic
vertex connectivity of graphs.
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Thank you!




