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The problems

B (. = a (connected) simple graph.

B Ag = (a;j)nxn = adjacency matrix of G.

(
1 if s and j are adjacent
A5 = <

\ 0 ifsand j are not adjacent |

B The eigenvalues of Ag, \1 > X2 > ... > )\, are the
eigenvalues of GG. (spectrum of G).

B \(G) = A\ (G): spectral radius of G.
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The problems
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The problems

®m Eigenvalues of GG = invariants of G

B The Problem: Can spectral conditions of G be used to
predict the structural properties of G?
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m Theorem (Wilf, J, London Math Soc, 1967) If G is
connected, then x(G) < A\ (G) + 1,
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The problems

B Example. Let x(G) be the chromatic number of G.

m Theorem (Wilf, J, London Math Soc, 1967) If GG is
connected, then x(G) < A\ (G) + 1,

B where equality holds iff G is complete or an odd cycle.

B This has been extended to group colorings in X. K. Zhang’s
dissertation (WVU 1998).
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Edge-Disjoint Spanning Trees and

Connectivity

B «(G): = vertex-connectivity of a graph G.
B </ (G): = edge-connectivity of a graph G.
B 7(G): = maximum number of edge-disjoint spanning trees in G.

B Problem (Cioaba and Wong, LAA 2012): Determine the relationship between 7(G)
and the eigenvalues of G.

B Problem (Abiad, Brimkov, Martinez-Rivera, O, and Zhang, Electronic Journal of
Linear Algebra, 2018) Find best possible condition on A2 (G) to warrant (G) > k.
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Edge-Disjoint Spanning Trees

B Example
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Edge-Disjoint Spanning Trees

B Example

®m Two edge-disjoint spanning trees (7(K4) = 2)

/N
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Theorem of Nash-Williams and Tutte

B X, Y]|s: = edges of G with one end in X and the other end
InY.

B d(X) = dg(X) = [|X,V(G) = X]g|.

® Theorem (Nash-Williams, Tutte [J. London Math. Soc.
(1961)]) For a connected graph G, 7(G) > k if and only if for
any partition (V1, Vs, ..., V;) of V(G),

S AV = Y Ve Vilel 2 k- 1)
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Theorem of Nash-Williams and Tutte

B X, Y]|s: = edges of G with one end in X and the other end
InY.

B d(X) = dg(X) = [|X,V(G) = X]g|.

® Theorem (Nash-Williams, Tutte [J. London Math. Soc.
(1961)]) For a connected graph G, 7(G) > k if and only if for
any partition (V1, Vs, ..., V;) of V(G),

t

1

§Zd(%ﬁ) = E Vi, Vilal = k(t - 1).
=1 1<i<j<t

B There is an equivalent version of the theorem.
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B w(G) = number of connected component of G.

® Theorem (Nash-Williams, Tutte [J. London Math. Soc.
(1961)]) For a connected graph G, these are equivalent.

m()r(G) >k
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Theorem of Nash-Williams and Tutte

mif Z C E(G), then G/Z is the graph obtained from G be
contracting the edges in Z.

B w(G) = number of connected component of G.

® Theorem (Nash-Williams, Tutte [J. London Math. Soc.
(1961)]) For a connected graph G, these are equivalent.

m (i) (G) > k.
m (i) VY C E(G), |[E(G/Y)| = k(IV(G/Y)| - 1).
| (i) VX C E(G), |X| > k(w(G — X) —1).
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The -t Lemma

®m The x'-7 Lemma (Gusfield, IPL 1983, and Catlin, Shao, HJL
DM 2009) £'(G) > 2k if and only if for any edge subset
X C E(G)with | X| <k, 7(G—X) > k.
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The -t Lemma

B The x'-7 Lemma (Gusfield, IPL 1983, and Catlin, Shao, HJL
DM 2009) £'(G) > 2k if and only if for any edge subset
X C E(G)with | X| <k, 7(G—X) > k.

B Sufficiency: Any edge cut must have size at least 2k.

B Necessity: Take a partition (V1, Vo, ..., V) of V(G — X)),

t
2 Y Vi Vile-x| = D_IVi,V = Vilal — 2| X]

1<i<j<t i=1
> 2kt — 2k =2k(t —1).

Then apply Nash-Williams and Tutte Theorem.
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graph.
| mTheorem (Cioaba, LAA 2010) If \»(G) < d — 2= then
k' (G) > k.

m Apply The x’-7 Lemma.

—p. 10/39



Cioaba’s Problem

m Cioaba’s idea Use eigenvalues to predict edge-connectivity,
then use the x'-7 Lemma to study 7(G).

M Let d be an integer with 2 < k < d, and G be a d-regular
graph.

m Theorem (Cioaba, LAA 2010) If As(G) < d — 25=L) then
k' (G) > k.

m Apply The x’-7 Lemma.

m Corollary: (Cioaba, LAA 2010) If \(G) < d — 4=2, then
T(G) > k.
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Cioaba’s Problem

M | et G be a d-regular graph.

B Theorem (Cioaba and Wong, LAA 2012) Assume that

4<d. If X(G) <d— 725, then 7(G) > 2.

B Theorem (Cioaba and Wong, LAA 2012) Assume that

6 < d. If 2(G) < d— 225, then 7(G) > 3.

B Conjecture (Cioaba and Wong, LAA 2012) Assume that

2 <2k <d. lf \(G) <d— 2=, then 7(G) > k.

—p. 11/39



Improvements in JGT, 2016

® Can we work on generic graphs in stead of regular graphs?

—p. 12/39



Improvements in JGT, 2016

® Can we work on generic graphs in stead of regular graphs?

W Let G be graph with §(G) = § and k£ > 0 be an integer.

—p. 12/39



Improvements in JGT, 2016

® Can we work on generic graphs in stead of regular graphs?

W Let G be graph with §(G) = § and k£ > 0 be an integer.
B Theorem (X. Gu, P. Li, S. Yao and HJL, JGT 2016) If § > 4

and \2(G) < 0 — 527, then 7(G) > 2.

—p. 12/39



Improvements in JGT, 2016

B Can we work on generic graphs in stead of regular graphs?
m Let G be graph with §(G) = é§ and k£ > 0 be an integer.

B Theorem (X. Gu, P. Li, S. Yao and HJL, JGT 2016) If § > 4

and \2(G) < 0 — 527, then 7(G) > 2.

m Theorem (X. Gu, P. Li, S. Yao and HJL, JGT 2016) If 6 > 6

and \2(G) < 0 — 521, then 7(G) > 3.
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Improvements in JGT, 2016

W Let G be graph with §(G) = 6 and k > 0 be an integer.

B Theorem (Cioaba, LAA 2010) If G is d-regular, d > 2k, and

X (G) < d— 4=E, then 7(G) > k.

® Theorem (X. Gu, P. LI, S. Yao and HJL, JGT 2016) If § > 2k
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Improvements in JGT, 2016

W Let G be graph with §(G) = 6 and k > 0 be an integer.

B Theorem (Cioaba, LAA 2010) If G is d-regular, d > 2k, and

X (G) < d— 4=E, then 7(G) > k.

® Theorem (X. Gu, P. LI, S. Yao and HJL, JGT 2016) If § > 2k

and \2(G) < 0 — 31, then 7(G) > k.

m Conjecture Let G be graph with §(G) =9, and 4 < 2k < 4. If

X2 (G) < 6 — 5=, then 7(G) > k.
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Over view of progresses

m Conjecture (k, d) Let G be graph with 6(G) = § and 2k < 4. If

X2 (G) < 6 — =t then 7(G) > .
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Over view of progresses
m Conjecture (k, ) Let G be graph with 6(G) = § and 2k < 4. If

X2 (G) < 6 — =, then 7(G) > k.

W Let G be graph on n vertices with 6 = §(G) > 2k > 4.

m Theorem (G. Liand L. Shi, LAA 2013; Y. Hong, Q. Liu, and
HJL, LAA 2014) For any integer k£ > 2 and ¢ > 2k, there
exists an integer N = N(k,d) such thatif n > N, then
Conjecture(k, ¢) holds,
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Over view of progresses
B Conjecture (Gu et al.) Let G be a graph with minimum
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B Conjecture (Gu et al.) Let G be a graph with minimum

degree 6 > 2k > 4. If X\o(G) < 6 — F=, then 7(G) > k.
M |t is a theorem. (Y. Hong, Q. Liu, Gu, and HJL, LAA 2014)
B How about Laplacian eigenvalues? (Algebraic connectivity)?

B How about signless Laplacian eigenvalues?
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Over view of progresses

B A = A(G): = adjacency matrix of G.
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Over view of progresses

B A = A(G): = adjacency matrix of G.

B D = D(G): = degree diagonal matrix of G.

m A — D gives Laplacian eigenvalues.

M . = a real number.

B D + A gives signless Laplacian eigenvalues.
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Over view of progresses

B A = A(G): = adjacency matrix of G.
B D = D(G): = degree diagonal matrix of G.
m A — D gives Laplacian eigenvalues.

B D + A gives signless Laplacian eigenvalues.

H . = areal number.

B )\ (G,a) > X(G,a) > --- > N\ (G,a) are eigenvalues of
aD + A.
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Over view of progresses

B\ (G,a) > X(G,a) > - > M\, (G, a) are eigenvalues of
aD + A.

B Theorem. (Liu, Hong, Gu, HJL, LAA 2014) Let k£ be an
Integer and G be a graph of order n and minimum degree

0 > 2k. If \2(G,a) < (a+1)0 — 3=t then 7(G) > k.
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Over view of progresses
B\ (G,a) > X(G,a) > --- > N\ (G,a) are eigenvalues of
aD + A.

B Theorem. (Liu, Hong, Gu, HJL, LAA 2014) Let £ be an
Integer and G be a graph of order n and minimum degree

0 > 2k. If \2(G,a) < (a+1)0 — 3=t then 7(G) > k.

m Choose different values of a« € {0,1,—1}.
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Over view of progresses

m )\;(G): = the ¢th largest eigenvalue of A.
1 (G): = the ith largest eigenvalue of D — A.
q;(G): = the ith largest eigenvalue of D + A.
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Over view of progresses

B )\, (G): =the ith largest eigenvalue of A.

1 (G): = the ith largest eigenvalue of D — A.
q;(G): = the ith largest eigenvalue of D + A.

m Theorem. (Liu, Hong, Gu, HJL, LAA 2014)

(1) If A\2(G) < 6 — 34, then 7(G) > k.

(2) If (2(G) < 20 — 3=, then 7(G) > k.

(3) If pp—1(G) > =, then 7(G) > k.
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Outline of Proof of Cioaba-Wong Conjecture

®m The U-Lemma.
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Outline of Proof of Cioaba-Wong Conjecture

B U-Lemma Let G be a graph with minimum degree 6 > 0
and ) £U Cc V(G). Ifd(U) <§—1,then |U| >0+ 1.

B Proof: d(U) < §—1means U has a vertex u € U not
incident with any edges in [U,V — U|.

m Ng(u) CU.
(U] > |{u} UNg()| > 1+,
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Outline of Proof of Cioaba-Wong Conjecture

® Lemma (Quadratic Inequality) Let X, Y C V(G) with
XNY =0.If

B\ (G,a) < (a+1)§ — max {Cﬁj(j, U )1, then
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Outline of Proof of Cioaba-Wong Conjecture

® Lemma (Quadratic Inequality) Let X, Y C V(G) with

XNY =0.If
B\ (G,a) < (a+1)§ — max {Cﬁgj, U )1, then
[
Y2 2 ((a+ >5—d|(TX|)—A2<G 7))
(a+ 15— ") s 6,a)x] - Y1

Y]
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Proof of Cioaba-Wong Conjecture (i)

B Theorem Let k be an integer and GG be a graph of order n
and minimum degree § > 2k. If A\2(G,a) < (a4 1)6 — 5=
then 7(G) > k.
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Proof of Cioaba-Wong Conjecture (i)

B Theorem Let k be an integer and GG be a graph of order n
and minimum degree § > 2k. If A\2(G,a) < (a4 1)6 — 5=
then 7(G) > k.

m Approach of the proof: For any partition (V1, V5, ..., V),
want to prove » ;. [[Vi. Vila| = k(t — 1).
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Proof of Cioaba-Wong Conjecture (ii)

B Assume that d(V}) < d(V2) < ... < d(W).
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Proof of Cioaba-Wong Conjecture (ii)

B Assume that d(V}) < d(V2) < ... < d(W).
mIfd(V1) > 2k, then > ;. [[Vi, Vjla| > kt. Assume

d(V1) <2k — 1.
Mletl <s<tbesuchthatd(V;) <2k —1andd(Vss1) > 2k
(if s < t).

W By U-lemma, for 1 <1 < s,

Vi| > 6+ 1.
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Proof of Cioaba-Wong Conjectur (iii)

m Assumption of Theorem, for 1 <1 <s.

2%k — 1 d(V;)

_ < _
Ao(Gra) < (a+1)0 — ——— < (a+ 1)

—p. 24/39



Proof of Cioaba-Wong Conjectur (iii)

B Assumption of Theorem, for 1 < < s.

2% — 1 d(V;)
< 1§ — |
571 et 1)

Ao(Gha) < (a+1)6 —

® By Quadratic Inequality, for 2 < i < s,

Vi, VilP > ((a+1)6 — d|(“/f|) — Xa(G, a)) -
((a +1)0 — d‘(“/j) — Xa2(G, a))\Vl\ - |V

> (2k—1—-d(V1))(2k —1—4d(V;))
(2k — 1 —d(V;))2.

Vv
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Proof of Cioaba-Wong Conjectur (iii)

B Assumption of Theorem, for 1 < < s.

2%k — 1 d(V;)

_ < _
Ao (Goa) < (a+1)0 51 <(a+1)d

® By Quadratic Inequality, for 2 < i < s,

Vi, VilP > ((a+1)6 — d|(“/?|) — Xa(G, a)) -
((a +1)0 — d‘(“/j) — Xa2(G, a))\Vl\ - |V

> (26 —1—d(V))(2k — 1 — d(V}))
(2k =1 —d(V;))*.

Vv

m |V, Vi]| >2k—1—-d(V;),for2 <i<s.
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Proof of Cioaba-Wong Conjecture (iv)

W Thus |[V1,V;]| > 2k — d(V;), for 2 < i < s.
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W Thus |[V1,V;]| > 2k — d(V;), for 2 < i < s.
(V1) > 305 Vi, Vil 2 305, (2k — d(V7)).
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Proof of Cioaba-Wong Conjecture (iv)

W Thus |[V1,V;]| > 2k — d(V;), for 2 < i < s.
(V1) > 305 Vi, Vil 2 305, (2k — d(V7)).

Zd(v;) = d(V1)+Zd(V;-)+ > d(Vy)

1=s5+1
> 2k(s—1)+2k(t—s)=2k(t—1).
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B Theorem (Sull O, arXiv:1603.03960v3 [math.CO] 4 Oct
2016.) If [V(G)| > 3 and If [V(G)| > 3 and X\2(G) < 3¢, then
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Connectivity and eigenvalue

B Our goal: to study the relationship between connectivity and
adjacency eigenvalues, algebraic connectivity (laplacian
eigenvalues) and signless laplacian eigenvalues.

® \We continuer using the matrix aD + A.

B\ (G,a) > X(G,a) > --- > N\, (G, a) are eigenvalues of
aD + A.
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Connectivity and eigenvalue

=v(d,g,c) =

"

1+ (8 —c) > i (6 —1)%,
1+2(0 — 1)1+ 300226 — 1)7,
2+ (20 —2—¢) 3125 (86 — 1)1,

2t + 1,

M Givenintegers A,§,kandgwith A >§ >k >2,g>3and1<c<k—1,we
have the following definition.

if g=2t+1landc<k—-—1<9§—2;
if g=2t+1landc=k—1=96 —1;
if g=2t+2andd > 3;
if g=2t+2andj = 2.
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B Givenintegers A,§,kand gwith A >§ >k >2,g>3and1<c<k—1,we
have the following definition.

—1
m= T
M, =v(g,c) =
(14 (5—o)th (s — 1), if g=2t+lande<k—1<8—2
< 14+2(6 — 1)1+ 300226 — 1), if g=2t+landc=k—1=268—1;
24+ (26 —2—¢) Yt 5(6 — 1)F, if g=2t+2andé > 3;
| 2t+1, if g=2t+2andéd = 2.

B Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) Each of the following holds.

: (k—1)An
(i) f A2(G,a) < (a+1)0 — O then x(G) > k.

kE—1)A
( ) , then x(G) > k.
V((S,g,k—l)

(i) If X2(G,a) < (a+1)§ —
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, then x(G) > k.
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Connectivity and eigenvalue

M Let A, 5, kand gbeintegerswith A >§ >k >2,g>3and1<c<k-—1.

B Define a = (5+1+\/(5+12)2_2(k_1m1, and
[
b= o(6. ALK — —k+2)(n—064+k—2), ifA>26—k+2);
L a(n — a), if6 <A <2(6—k+2).

B Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) Each of the following holds.
mﬁAﬂG)<5—§%%é%ﬂmndG)2h
(i) If pin—1(G) > % then x(G) > k.
(i) If g2(G) < 26 — SEUSE then 1(G) > k.
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Outline of Proof

B We need to modify the Useful Lemma.

| - Q’
2
W, =1(,9,c) =
1+ (-t (6 - 1), if g=2t+lande<k—1<8—2
< 14+200 - D432 - 1),  ifg=2t+landc=k—1=48—1;
24+ (26 —2—¢)SFZ5 (6 — 1), if g=2t+2andéd > 3;
| 2t+1, if g=2t+2andd = 2.

B New Useful Lemma. Let G be a simple connected graph with § = 6(G) > k > 2
and girth g = g(G) > 3. Let C be a minimum vertex cut of G with |C| = cand U
be a connected componentof G — C. Ifc < k —1 < §, then |V(U)| > v(4, g, c).
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Outline of Proof

® Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) Each
of the following holds.

() If X2(G,a) < (a+1)6 —
then x(G) > k.
(i) If \o(G,a) < (a4 1)) — ”

(k—1)An
2v(0,9,k — 1)(n —v(d,g,k — 1))’

(k— 1)A
(5agak R 1)

, then x(G) > k.
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Outline of Proof

B Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) Each
of the following holds.

() If X2(G,a) < (a+1)6 —
then x(G) > k.
(i) If \o(G,a) < (a4 1)) — ”

(k—1)An
2v(0,9,k — 1)(n —v(d,g,k — 1))’

(k—1)A
(6,9, k —1)
m By contradiction, we assume k(G) =c < k — 1.

, then x(G) > k.
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B C:=aminimumvertexcutof G, |C|=c< k—-1<§—1.

B Notation: For subsets X,Y C V(G), e(X,Y):= number of edges in G linking a
vertex in X and a vertexinY.

B A:= aconnected componentof G — C, m1 = e(A,C) = d(A).
BB =G-(V(AUOC),ms=¢e(B,C),and A = V(G) — A.
By =v(gk—-1),|A =ni and |B| = ns.

M By New Useful Lemma, v < min{ni,n2} < 2 <n —v.

m,>2%o0r—— <1
2(n — v)

—p. 36/39



Outline of Proof

—p. 37/39



Outline of Proof

B he quotient matrix of aD + A corresponding to the partition (A, C U B) becomes:

—p. 37/39



Outline of Proof

B he quotient matrix of aD + A corresponding to the partition (A, C U B) becomes:

|
+1)dy — 74 L
R(aD + A) = . )’rni " m m1
na+c (a+1)dz — na+c

—p. 37/39



Outline of Proof

B he quotient matrix of aD + A corresponding to the partition (A, C U B) becomes:

|
+1)dy — 74 L
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Outline of Proof

B he quotient matrix of aD + A corresponding to the partition (A, C U B) becomes:

|
+ 1)d; — 24 L
R@p+A) = | )ml i ot
n2—|1—c (CL + 1)d2 o ng—ll—c
i B Apply n > 2v or _ " <1and algebra,
2(n —v)
M to conclude
(k—1)An

A2(R(aD + A)) > (a + 1)8 —
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Outline of Proof

Hm Given two sequences #; > 6, > ---6,, and
m >ne > .- > n,m With n > m, the second sequence
interlaces the firstif 6; > n; > 0,,_14, for 1 <i < m.

B Theorem (Haemers, LAA 1995) Eigenvalues of any quotient
matrix of GG interlace the eigenvalues of G.

M By interlacing (we have a contradiction)

(k—1)An

)\Q(CLD + A) > )\Q(R(CLD -+ A)) > (a+ 1)(5 — 21/(71 — V) .

—p. 38/39



Thank You




	small The problems 
	small The problems 
	small The problems 
	small The problems 

	small The problems 
	small The problems 

	small The problems 
	small The problems 
	small The problems 
	small The problems 

	small Edge-Disjoint Spanning Trees and Connectivity
	small Edge-Disjoint Spanning Trees and Connectivity
	small Edge-Disjoint Spanning Trees and Connectivity
	small Edge-Disjoint Spanning Trees and Connectivity
	small Edge-Disjoint Spanning Trees and Connectivity

	small Edge-Disjoint Spanning Trees
	small Edge-Disjoint Spanning Trees

	small Theorem of Nash-Williams and Tutte
	small Theorem of Nash-Williams and Tutte
	small Theorem of Nash-Williams and Tutte
	small Theorem of Nash-Williams and Tutte

	small Theorem of Nash-Williams and Tutte
	small Theorem of Nash-Williams and Tutte
	small Theorem of Nash-Williams and Tutte
	small Theorem of Nash-Williams and Tutte
	small Theorem of Nash-Williams and Tutte
	small Theorem of Nash-Williams and Tutte

	small The $kappa '$-$	au $ Lemma 
	small The $kappa '$-$	au $ Lemma 
	small The $kappa '$-$	au $ Lemma 

	small Cioaba's Problem 
	small Cioaba's Problem 
	small Cioaba's Problem 
	small Cioaba's Problem 
	small Cioaba's Problem 

	small Cioaba's Problem 
	small Cioaba's Problem 
	small Cioaba's Problem 
	small Cioaba's Problem 

	small Improvements in JGT, 2016 
	small Improvements in JGT, 2016 
	small Improvements in JGT, 2016 
	small Improvements in JGT, 2016 

	small Improvements in JGT, 2016 
	small Improvements in JGT, 2016 
	small Improvements in JGT, 2016 
	small Improvements in JGT, 2016 

	small Over view of progresses 
	small Over view of progresses 
	small Over view of progresses 

	small Over view of progresses 
	small Over view of progresses 
	small Over view of progresses 
	small Over view of progresses 

	small Over view of progresses 
	small Over view of progresses 
	small Over view of progresses 
	small Over view of progresses 
	small Over view of progresses 
	small Over view of progresses 

	small Over view of progresses
	small Over view of progresses
	small Over view of progresses

	small Over view of progresses
	small Over view of progresses

	small Outline of Proof of Cioaba-Wong Conjecture
	small Outline of Proof of Cioaba-Wong Conjecture
	small Outline of Proof of Cioaba-Wong Conjecture

	small Outline of Proof of Cioaba-Wong Conjecture
	small Outline of Proof of Cioaba-Wong Conjecture
	small Outline of Proof of Cioaba-Wong Conjecture
	small Outline of Proof of Cioaba-Wong Conjecture

	small Outline of Proof of Cioaba-Wong Conjecture
	small Outline of Proof of Cioaba-Wong Conjecture
	small Outline of Proof of Cioaba-Wong Conjecture

	small Proof of Cioaba-Wong Conjecture (i) 
	small Proof of Cioaba-Wong Conjecture (i)


	small Proof of Cioaba-Wong Conjecture (ii) 
	small Proof of Cioaba-Wong Conjecture (ii)

	small Proof of Cioaba-Wong Conjecture (ii)

	small Proof of Cioaba-Wong Conjecture (ii)


	small Proof of Cioaba-Wong Conjectur (iii) 
	small Proof of Cioaba-Wong Conjectur (iii)

	small Proof of Cioaba-Wong Conjectur (iii)


	small Proof of Cioaba-Wong Conjecture (iv) 
	small Proof of Cioaba-Wong Conjecture (iv)

	small Proof of Cioaba-Wong Conjecture (iv)


	small References
	small References
	small References
	small References
	small References

	small References
	small References
	small References
	small References
	small References

	small Connectivity and eigenvalue
	small Connectivity and eigenvalue
	small Connectivity and eigenvalue

	small Connectivity and eigenvalue
	small Connectivity and eigenvalue
	small Connectivity and eigenvalue
	small Connectivity and eigenvalue

	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 

	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 

	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 

	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 
	small Connectivity and eigenvalue 

	small Outline of Proof
	small Outline of Proof
	small Outline of Proof
	small Outline of Proof

	small Outline of Proof
	small Outline of Proof

	small Outline of Proof
	small Outline of Proof
	small Outline of Proof
	small Outline of Proof
	small Outline of Proof
	small Outline of Proof
	small Outline of Proof

	small Outline of Proof
	small Outline of Proof
	small Outline of Proof
	small Outline of Proof
	small Outline of Proof

	small Outline of Proof
	small Outline of Proof
	small Outline of Proof

	; 

