Graph spectral conditions and structural properties

Hong-Jian Lai

West Virginia University

 \blacksquare G: = a (connected) simple graph.

- \blacksquare G: = a (connected) simple graph.
- $\blacksquare A_G = (a_{ij})_{n \times n}$ = adjacency matrix of G.

$$a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 0 & \text{if } i \text{ and } j \text{ are not adjacent} \end{cases}$$

- \blacksquare G: = a (connected) simple graph.
- $\blacksquare A_G = (a_{ij})_{n \times n}$ = adjacency matrix of G.

$$a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 0 & \text{if } i \text{ and } j \text{ are not adjacent} \end{cases}$$

■ The eigenvalues of A_G , $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$, are the eigenvalues of G. (spectrum of G).

- \blacksquare G: = a (connected) simple graph.
- $\blacksquare A_G = (a_{ij})_{n \times n}$ = adjacency matrix of G.

$$a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent} \\ 0 & \text{if } i \text{ and } j \text{ are not adjacent} \end{cases}$$

- The eigenvalues of A_G , $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$, are the eigenvalues of G. (spectrum of G).
- lacksquare $\lambda(G) = \lambda_1(G)$: spectral radius of G.

Eigenvalues of G = invariants of G

- **E**igenvalues of G = invariants of G
- The Problem: Can spectral conditions of G be used to predict the structural properties of G?

Example. Let $\chi(G)$ be the chromatic number of G.

- **Example.** Let $\chi(G)$ be the chromatic number of G.
- Theorem (Wilf, J, London Math Soc, 1967) If G is connected, then $\chi(G) \leq \lambda_1(G) + 1$,

- **Example.** Let $\chi(G)$ be the chromatic number of G.
- Theorem (Wilf, J, London Math Soc, 1967) If G is connected, then $\chi(G) \leq \lambda_1(G) + 1$,
- \blacksquare where equality holds iff G is complete or an odd cycle.

- **Example.** Let $\chi(G)$ be the chromatic number of G.
- Theorem (Wilf, J, London Math Soc, 1967) If G is connected, then $\chi(G) \leq \lambda_1(G) + 1$,
- \blacksquare where equality holds iff G is complete or an odd cycle.
- This has been extended to group colorings in X. K. Zhang's dissertation (WVU 1998).

 $\kappa(G)$: = vertex-connectivity of a graph G.

- $\kappa(G)$: = vertex-connectivity of a graph G.
- $\kappa'(G)$: = edge-connectivity of a graph G.

- $\kappa(G)$: = vertex-connectivity of a graph G.
- $\kappa'(G)$: = edge-connectivity of a graph G.
- o au(G): = maximum number of edge-disjoint spanning trees in G.

- $\kappa(G)$: = vertex-connectivity of a graph G.
- $\kappa'(G)$: = edge-connectivity of a graph G.
- o au(G): = maximum number of edge-disjoint spanning trees in G.
- Problem (Cioaba and Wong, LAA 2012): Determine the relationship between $\tau(G)$ and the eigenvalues of G.

- $\kappa(G)$: = vertex-connectivity of a graph G.
- $\kappa'(G)$: = edge-connectivity of a graph G.
- o au(G): = maximum number of edge-disjoint spanning trees in G.
- Problem (Cioaba and Wong, LAA 2012): Determine the relationship between $\tau(G)$ and the eigenvalues of G.
- Problem (Abiad, Brimkov, Martĺnez-Rivera, O, and Zhang, Electronic Journal of Linear Algebra, 2018) Find best possible condition on $\lambda_2(G)$ to warrant $\kappa(G) \geq k$.

Edge-Disjoint Spanning Trees

Example

Edge-Disjoint Spanning Trees

Example

■ Two edge-disjoint spanning trees ($\tau(K_4) = 2$)

 $lackbox{$\blacksquare$} [X,Y]_G$: = edges of G with one end in X and the other end in Y.

- $[X,Y]_G$: = edges of G with one end in X and the other end in Y.
- $d(X) = d_G(X) = |[X, V(G) X]_G|.$

- $[X,Y]_G$: = edges of G with one end in X and the other end in Y.
- $d(X) = d_G(X) = |[X, V(G) X]_G|.$
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. (1961)]) For a connected graph G, $\tau(G) \ge k$ if and only if for any partition $(V_1, V_2, ..., V_t)$ of V(G),

$$\frac{1}{2} \sum_{i=1}^{t} d(V_i) = \sum_{1 \le i < j \le t} |[V_i, V_j]_G| \ge k(t-1).$$

- $[X,Y]_G$: = edges of G with one end in X and the other end in Y.
- $d(X) = d_G(X) = |[X, V(G) X]_G|.$
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. (1961)]) For a connected graph G, $\tau(G) \ge k$ if and only if for any partition $(V_1, V_2, ..., V_t)$ of V(G),

$$\frac{1}{2} \sum_{i=1}^{t} d(V_i) = \sum_{1 \le i < j \le t} |[V_i, V_j]_G| \ge k(t-1).$$

■ There is an equivalent version of the theorem.

■ If $Z \subseteq E(G)$, then G/Z is the graph obtained from G be contracting the edges in Z.

- If $Z \subseteq E(G)$, then G/Z is the graph obtained from G be contracting the edges in Z.
- lacksquare $\omega(G)$ = number of connected component of G.

- If $Z \subseteq E(G)$, then G/Z is the graph obtained from G be contracting the edges in Z.
- $lue{\omega}(G)$ = number of connected component of G.
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. (1961)]) For a connected graph *G*, these are equivalent.

- If $Z \subseteq E(G)$, then G/Z is the graph obtained from G be contracting the edges in Z.
- lacksquare $\omega(G)$ = number of connected component of G.
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. (1961)]) For a connected graph *G*, these are equivalent.
- \bullet (i) $\tau(G) \geq k$.

- If $Z \subseteq E(G)$, then G/Z is the graph obtained from G be contracting the edges in Z.
- lacksquare $\omega(G)$ = number of connected component of G.
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. (1961)]) For a connected graph *G*, these are equivalent.
- \bullet (i) $\tau(G) \geq k$.
- \blacksquare (ii) $\forall Y \subseteq E(G)$, $|E(G/Y)| \ge k(|V(G/Y)| 1)$.

- If $Z \subseteq E(G)$, then G/Z is the graph obtained from G be contracting the edges in Z.
- lacksquare $\omega(G)$ = number of connected component of G.
- Theorem (Nash-Williams, Tutte [J. London Math. Soc. (1961)]) For a connected graph *G*, these are equivalent.
- \bullet (i) $\tau(G) \geq k$.
- \blacksquare (ii) $\forall Y \subseteq E(G)$, $|E(G/Y)| \ge k(|V(G/Y)| 1)$.
- \blacksquare (iii) $\forall X \subseteq E(G), |X| \ge k(\omega(G-X)-1).$

The κ' - τ Lemma

The κ' - τ Lemma (Gusfield, IPL 1983, and Catlin, Shao, HJL DM 2009) $\kappa'(G) \geq 2k$ if and only if for any edge subset $X \subseteq E(G)$ with $|X| \leq k$, $\tau(G - X) \geq k$.

The κ' - τ Lemma

- The κ' - τ Lemma (Gusfield, IPL 1983, and Catlin, Shao, HJL DM 2009) $\kappa'(G) \geq 2k$ if and only if for any edge subset $X \subseteq E(G)$ with $|X| \leq k$, $\tau(G X) \geq k$.
- **Sufficiency**: Any edge cut must have size at least 2k.

The κ' - τ Lemma

- The κ' - τ Lemma (Gusfield, IPL 1983, and Catlin, Shao, HJL DM 2009) $\kappa'(G) \geq 2k$ if and only if for any edge subset $X \subseteq E(G)$ with $|X| \leq k$, $\tau(G X) \geq k$.
- Sufficiency: Any edge cut must have size at least 2k.
- Necessity: Take a partition $(V_1, V_2, ..., V_t)$ of V(G X),

$$2\sum_{1\leq i< j\leq t} |[V_i, V_j]_{G-X}| = \sum_{i=1}^t |[V_i, V - V_i]_G| - 2|X|$$

$$\geq 2kt - 2k = 2k(t-1).$$

Then apply Nash-Williams and Tutte Theorem.

■ Cioaba's idea Use eigenvalues to predict edge-connectivity, then use the κ' - τ Lemma to study $\tau(G)$.

- Cioaba's idea Use eigenvalues to predict edge-connectivity, then use the κ' - τ Lemma to study $\tau(G)$.
- Let d be an integer with $2 \le k \le d$, and G be a d-regular graph.

- Cioaba's idea Use eigenvalues to predict edge-connectivity, then use the κ' - τ Lemma to study $\tau(G)$.
- Let d be an integer with $2 \le k \le d$, and G be a d-regular graph.
- Theorem (Cioaba, LAA 2010) If $\lambda_2(G) < d \frac{2(k-1)}{d+1}$, then $\kappa'(G) \geq k$.

- Cioaba's idea Use eigenvalues to predict edge-connectivity, then use the κ' - τ Lemma to study $\tau(G)$.
- Let d be an integer with $2 \le k \le d$, and G be a d-regular graph.
- Theorem (Cioaba, LAA 2010) If $\lambda_2(G) < d \frac{2(k-1)}{d+1}$, then $\kappa'(G) \geq k$.
- Apply The κ' - τ Lemma.

- Cioaba's idea Use eigenvalues to predict edge-connectivity, then use the κ' - τ Lemma to study $\tau(G)$.
- Let d be an integer with $2 \le k \le d$, and G be a d-regular graph.
- Theorem (Cioaba, LAA 2010) If $\lambda_2(G) < d \frac{2(k-1)}{d+1}$, then $\kappa'(G) \geq k$.
- Apply The κ' - τ Lemma.
- Corollary: (Cioaba, LAA 2010) If $\lambda_2(G) < d \frac{4k-2}{d+1}$, then $\tau(G) \geq k$.

Let G be a d-regular graph.

- Let G be a d-regular graph.
- Theorem (Cioaba and Wong, LAA 2012) Assume that $4 \le d$. If $\lambda_2(G) < d \frac{3}{d+1}$, then $\tau(G) \ge 2$.

- Let G be a d-regular graph.
- Theorem (Cioaba and Wong, LAA 2012) Assume that $4 \le d$. If $\lambda_2(G) < d \frac{3}{d+1}$, then $\tau(G) \ge 2$.
- Theorem (Cioaba and Wong, LAA 2012) Assume that $6 \le d$. If $\lambda_2(G) < d \frac{5}{d+1}$, then $\tau(G) \ge 3$.

- Let G be a d-regular graph.
- Theorem (Cioaba and Wong, LAA 2012) Assume that $4 \le d$. If $\lambda_2(G) < d \frac{3}{d+1}$, then $\tau(G) \ge 2$.
- Theorem (Cioaba and Wong, LAA 2012) Assume that $6 \le d$. If $\lambda_2(G) < d \frac{5}{d+1}$, then $\tau(G) \ge 3$.
- **Conjecture** (Cioaba and Wong, LAA 2012) Assume that $2 \le 2k \le d$. If $\lambda_2(G) < d \frac{2k-1}{d+1}$, then $\tau(G) \ge k$.

■ Can we work on generic graphs in stead of regular graphs?

- Can we work on generic graphs in stead of regular graphs?
- Let G be graph with $\delta(G) = \delta$ and k > 0 be an integer.

- Can we work on generic graphs in stead of regular graphs?
- Let G be graph with $\delta(G) = \delta$ and k > 0 be an integer.
- Theorem (X. Gu, P. Li, S. Yao and HJL, JGT 2016) If $\delta \geq 4$ and $\lambda_2(G) < \delta \frac{3}{\delta+1}$, then $\tau(G) \geq 2$.

- Can we work on generic graphs in stead of regular graphs?
- Let G be graph with $\delta(G) = \delta$ and k > 0 be an integer.
- Theorem (X. Gu, P. Li, S. Yao and HJL, JGT 2016) If $\delta \geq 4$ and $\lambda_2(G) < \delta \frac{3}{\delta+1}$, then $\tau(G) \geq 2$.
- Theorem (X. Gu, P. Li, S. Yao and HJL, JGT 2016) If $\delta \geq 6$ and $\lambda_2(G) < \delta \frac{5}{\delta+1}$, then $\tau(G) \geq 3$.

Let G be graph with $\delta(G) = \delta$ and k > 0 be an integer.

- Let G be graph with $\delta(G) = \delta$ and k > 0 be an integer.
- Theorem (Cioaba, LAA 2010) If G is d-regular, $d \ge 2k$, and $\lambda_2(G) < d \frac{4k-2}{d+1}$, then $\tau(G) \ge k$.

- Let G be graph with $\delta(G) = \delta$ and k > 0 be an integer.
- Theorem (Cioaba, LAA 2010) If G is d-regular, $d \ge 2k$, and $\lambda_2(G) < d \frac{4k-2}{d+1}$, then $\tau(G) \ge k$.
- Theorem (X. Gu, P. Li, S. Yao and HJL, JGT 2016) If $\delta \geq 2k$ and $\lambda_2(G) < \delta \frac{3k-1}{\delta+1}$, then $\tau(G) \geq k$.

- Let G be graph with $\delta(G) = \delta$ and k > 0 be an integer.
- Theorem (Cioaba, LAA 2010) If G is d-regular, $d \ge 2k$, and $\lambda_2(G) < d \frac{4k-2}{d+1}$, then $\tau(G) \ge k$.
- Theorem (X. Gu, P. Li, S. Yao and HJL, JGT 2016) If $\delta \geq 2k$ and $\lambda_2(G) < \delta \frac{3k-1}{\delta+1}$, then $\tau(G) \geq k$.
- Conjecture Let G be graph with $\delta(G) = \delta$, and $4 \le 2k \le \delta$. If $\lambda_2(G) < \delta \frac{2k-1}{\delta+1}$, then $\tau(G) \ge k$.

■ Conjecture (k, δ) Let G be graph with $\delta(G) = \delta$ and $2k \leq \delta$. If $\lambda_2(G) < \delta - \frac{2k-1}{\delta+1}$, then $\tau(G) \geq k$.

- Conjecture (k, δ) Let G be graph with $\delta(G) = \delta$ and $2k \leq \delta$. If $\lambda_2(G) < \delta \frac{2k-1}{\delta+1}$, then $\tau(G) \geq k$.
- Let G be graph on n vertices with $\delta = \delta(G) \ge 2k \ge 4$.

- Conjecture (k, δ) Let G be graph with $\delta(G) = \delta$ and $2k \leq \delta$. If $\lambda_2(G) < \delta \frac{2k-1}{\delta+1}$, then $\tau(G) \geq k$.
- Let G be graph on n vertices with $\delta = \delta(G) \ge 2k \ge 4$.
- Theorem (G. Li and L. Shi, LAA 2013; Y. Hong, Q. Liu, and HJL, LAA 2014) For any integer $k \geq 2$ and $\delta \geq 2k$, there exists an integer $N = N(k, \delta)$ such that if $n \geq N$, then Conjecture (k, δ) holds,

Conjecture (Gu et al.) Let G be a graph with minimum degree $\delta \geq 2k \geq 4$. If $\lambda_2(G) < \delta - \frac{2k-1}{\delta+1}$, then $\tau(G) \geq k$.

- Conjecture (Gu et al.) Let G be a graph with minimum degree $\delta \geq 2k \geq 4$. If $\lambda_2(G) < \delta \frac{2k-1}{\delta+1}$, then $\tau(G) \geq k$.
- It is a theorem. (Y. Hong, Q. Liu, Gu, and HJL, LAA 2014)

- Conjecture (Gu et al.) Let G be a graph with minimum degree $\delta \geq 2k \geq 4$. If $\lambda_2(G) < \delta \frac{2k-1}{\delta+1}$, then $\tau(G) \geq k$.
- It is a theorem. (Y. Hong, Q. Liu, Gu, and HJL, LAA 2014)
- How about Laplacian eigenvalues? (Algebraic connectivity)?

- Conjecture (Gu et al.) Let G be a graph with minimum degree $\delta \geq 2k \geq 4$. If $\lambda_2(G) < \delta \frac{2k-1}{\delta+1}$, then $\tau(G) \geq k$.
- It is a theorem. (Y. Hong, Q. Liu, Gu, and HJL, LAA 2014)
- How about Laplacian eigenvalues? (Algebraic connectivity)?
- How about signless Laplacian eigenvalues?

 $\blacksquare A = A(G)$: = adjacency matrix of G.

- $\blacksquare A = A(G)$: = adjacency matrix of G.
- ightharpoonup D = D(G): = degree diagonal matrix of G.

- $\blacksquare A = A(G)$: = adjacency matrix of G.
- ightharpoonup D = D(G): = degree diagonal matrix of G.
- $\blacksquare A D$ gives Laplacian eigenvalues.

- $\blacksquare A = A(G)$: = adjacency matrix of G.
- ightharpoonup D = D(G): = degree diagonal matrix of G.
- $\blacksquare A D$ gives Laplacian eigenvalues.
- ightharpoonup D + A gives signless Laplacian eigenvalues.

- $\blacksquare A = A(G)$: = adjacency matrix of G.
- ightharpoonup D = D(G): = degree diagonal matrix of G.
- $\blacksquare A D$ gives Laplacian eigenvalues.
- ightharpoonup D + A gives signless Laplacian eigenvalues.
- $\blacksquare a$: = a real number.

- $\blacksquare A = A(G)$: = adjacency matrix of G.
- ightharpoonup D = D(G): = degree diagonal matrix of G.
- $\blacksquare A D$ gives Laplacian eigenvalues.
- ightharpoonup D + A gives signless Laplacian eigenvalues.
- $\blacksquare a$: = a real number.
- $\lambda_1(G,a) \geq \lambda_2(G,a) \geq \cdots \geq \lambda_n(G,a)$ are eigenvalues of aD+A.

 $\lambda_1(G,a) \geq \lambda_2(G,a) \geq \cdots \geq \lambda_n(G,a)$ are eigenvalues of aD+A.

- $\lambda_1(G,a) \geq \lambda_2(G,a) \geq \cdots \geq \lambda_n(G,a)$ are eigenvalues of aD+A.
- Theorem. (Liu, Hong, Gu, HJL, LAA 2014) Let k be an integer and G be a graph of order n and minimum degree $\delta \geq 2k$. If $\lambda_2(G,a) < (a+1)\delta \frac{2k-1}{\delta+1}$ then $\tau(G) \geq k$.

- $\lambda_1(G,a) \geq \lambda_2(G,a) \geq \cdots \geq \lambda_n(G,a)$ are eigenvalues of aD+A.
- Theorem. (Liu, Hong, Gu, HJL, LAA 2014) Let k be an integer and G be a graph of order n and minimum degree $\delta \geq 2k$. If $\lambda_2(G,a) < (a+1)\delta \frac{2k-1}{\delta+1}$ then $\tau(G) \geq k$.
- Choose different values of $a \in \{0, 1, -1\}$.

■ $\lambda_i(G)$: = the ith largest eigenvalue of A. $\mu_i(G)$: = the ith largest eigenvalue of D-A. $q_i(G)$: = the ith largest eigenvalue of D+A.

- $\lambda_i(G)$: = the ith largest eigenvalue of A. $\mu_i(G)$: = the ith largest eigenvalue of D-A. $q_i(G)$: = the ith largest eigenvalue of D+A.
- Theorem. (Liu, Hong, Gu, HJL, LAA 2014)

(1) If
$$\lambda_2(G) < \delta - \frac{2k-1}{\delta+1}$$
, then $\tau(G) \ge k$.

(2) If
$$q_2(G) < 2\delta - \frac{2k-1}{\delta+1}$$
, then $\tau(G) \ge k$.

(3) If
$$\mu_{n-1}(G) > \frac{2k-1}{\delta+1}$$
, then $\tau(G) \geq k$.

■ The *U*-Lemma.

- The *U*-Lemma.
- Quadratic Inequality.

- The *U*-Lemma.
- Quadratic Inequality.
- Proof of Cioaba-Wong Conjecture.

■ *U*-Lemma Let *G* be a graph with minimum degree $\delta > 0$ and $\emptyset \neq U \subset V(G)$. If $d(U) \leq \delta - 1$, then $|U| \geq \delta + 1$.

- *U*-Lemma Let *G* be a graph with minimum degree $\delta > 0$ and $\emptyset \neq U \subset V(G)$. If $d(U) \leq \delta 1$, then $|U| \geq \delta + 1$.
- Proof: $d(U) \le \delta 1$ means U has a vertex $u \in U$ not incident with any edges in [U, V U].

- *U*-Lemma Let *G* be a graph with minimum degree $\delta > 0$ and $\emptyset \neq U \subset V(G)$. If $d(U) \leq \delta 1$, then $|U| \geq \delta + 1$.
- Proof: $d(U) \le \delta 1$ means U has a vertex $u \in U$ not incident with any edges in [U, V U].
- $\blacksquare N_G(u) \subseteq U.$

- *U*-Lemma Let *G* be a graph with minimum degree $\delta > 0$ and $\emptyset \neq U \subset V(G)$. If $d(U) \leq \delta 1$, then $|U| \geq \delta + 1$.
- Proof: $d(U) \le \delta 1$ means U has a vertex $u \in U$ not incident with any edges in [U, V U].
- $\blacksquare N_G(u) \subseteq U.$
- $|U| \ge |\{u\} \cup N_G(u)| \ge 1 + \delta.$

■ Lemma (Quadratic Inequality) Let $X,Y\subset V(G)$ with $X\cap Y=\emptyset$. If

- Lemma (Quadratic Inequality) Let $X, Y \subset V(G)$ with $X \cap Y = \emptyset$. If
- $\lambda_2(G, a) \le (a+1)\delta \max\{\frac{d(X)}{|X|}, \frac{d(Y)}{|Y|}\}, \text{ then }$

- Lemma (Quadratic Inequality) Let $X, Y \subset V(G)$ with $X \cap Y = \emptyset$. If
- $\lambda_2(G, a) \le (a+1)\delta \max\{\frac{d(X)}{|X|}, \frac{d(Y)}{|Y|}\}, \text{ then}$

$$|[X,Y]|^2 \ge ((a+1)\delta - \frac{d(X)}{|X|} - \lambda_2(G,a)) \cdot$$

 $((a+1)\delta - \frac{d(Y)}{|Y|} - \lambda_2(G,a))|X| \cdot |Y|.$

Theorem Let k be an integer and G be a graph of order n and minimum degree $\delta \geq 2k$. If $\lambda_2(G,a) < (a+1)\delta - \frac{2k-1}{\delta+1}$ then $\tau(G) \geq k$.

- Theorem Let k be an integer and G be a graph of order n and minimum degree $\delta \geq 2k$. If $\lambda_2(G,a) < (a+1)\delta \frac{2k-1}{\delta+1}$ then $\tau(G) \geq k$.
- Approach of the proof: For any partition (V_1, V_2, \dots, V_t) , want to prove $\sum_{1 \le i \le j \le t} |[V_i, V_j]_G| \ge k(t-1)$.

■ Assume that $d(V_1) \leq d(V_2) \leq \ldots \leq d(V_t)$.

- Assume that $d(V_1) \leq d(V_2) \leq \ldots \leq d(V_t)$.
- If $d(V_1) \geq 2k$, then $\sum_{1 \leq i < j \leq t} |[V_i, V_j]_G| \geq kt$. Assume $d(V_1) \leq 2k-1$.

- Assume that $d(V_1) \le d(V_2) \le \ldots \le d(V_t)$.
- If $d(V_1) \ge 2k$, then $\sum_{1 \le i < j \le t} |[V_i, V_j]_G| \ge kt$. Assume $d(V_1) \le 2k 1$.
- Let $1 \le s \le t$ be such that $d(V_s) \le 2k-1$ and $d(V_{s+1}) \ge 2k$ (if s < t).

- Assume that $d(V_1) \leq d(V_2) \leq \ldots \leq d(V_t)$.
- If $d(V_1) \ge 2k$, then $\sum_{1 \le i < j \le t} |[V_i, V_j]_G| \ge kt$. Assume $d(V_1) \le 2k 1$.
- Let $1 \le s \le t$ be such that $d(V_s) \le 2k-1$ and $d(V_{s+1}) \ge 2k$ (if s < t).
- By U-lemma, for $1 \le i \le s$, $|V_i| \ge \delta + 1$.

■ Assumption of Theorem, for $1 \le i \le s$.

$$\lambda_2(G, a) < (a+1)\delta - \frac{2k-1}{\delta+1} \le (a+1)\delta - \frac{d(V_i)}{|V_i|}.$$

■ Assumption of Theorem, for $1 \le i \le s$.

$$\lambda_2(G, a) < (a+1)\delta - \frac{2k-1}{\delta+1} \le (a+1)\delta - \frac{d(V_i)}{|V_i|}.$$

■ By Quadratic Inequality, for $2 \le i \le s$,

$$|[V_1, V_i]|^2 \ge ((a+1)\delta - \frac{d(V_1)}{|V_1|} - \lambda_2(G, a)) \cdot$$

$$((a+1)\delta - \frac{d(V_i)}{|V_i|} - \lambda_2(G, a))|V_1| \cdot |V_i|$$

$$> (2k-1 - d(V_1))(2k-1 - d(V_i))$$

$$\ge (2k-1 - d(V_i))^2.$$

■ Assumption of Theorem, for $1 \le i \le s$.

$$\lambda_2(G, a) < (a+1)\delta - \frac{2k-1}{\delta+1} \le (a+1)\delta - \frac{d(V_i)}{|V_i|}.$$

■ By Quadratic Inequality, for $2 \le i \le s$,

$$|[V_1, V_i]|^2 \ge ((a+1)\delta - \frac{d(V_1)}{|V_1|} - \lambda_2(G, a)) \cdot$$

$$((a+1)\delta - \frac{d(V_i)}{|V_i|} - \lambda_2(G, a))|V_1| \cdot |V_i|$$

$$> (2k-1 - d(V_1))(2k-1 - d(V_i))$$

$$\ge (2k-1 - d(V_i))^2.$$

 $|V_1, V_i| > 2k - 1 - d(V_i)$, for $2 \le i \le s$.

■ Thus $|[V_1, V_i]| \ge 2k - d(V_i)$, for $2 \le i \le s$.

- Thus $|[V_1, V_i]| \ge 2k d(V_i)$, for $2 \le i \le s$.

- Thus $|[V_1, V_i]| \ge 2k d(V_i)$, for $2 \le i \le s$.

$$\sum_{i=1}^{t} d(V_i) = d(V_1) + \sum_{i=2}^{s} d(V_i) + \sum_{i=s+1}^{t} d(V_i)$$

$$\geq 2k(s-1) + 2k(t-s) = 2k(t-1).$$

1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf).

- 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf).
- 2 P. A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math., 309 (2009), 1033-1040.

- 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf).
- 2 P. A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math., 309 (2009), 1033-1040.
- 3 S. M. Cioabă and W.Wong, Edge-disjoint spanning trees and eigenvalues of regular graphs, Linear Algebra Appl., 437 (2012) 630-647.

- 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf).
- 2 P. A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math., 309 (2009), 1033-1040.
- 3 S. M. Cioabă and W.Wong, Edge-disjoint spanning trees and eigenvalues of regular graphs, Linear Algebra Appl., 437 (2012) 630-647.
- 4 W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226/228 (1995), 593-616.

- 1 A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Universitext 2012. (http://homepages.cwi.nl/ aeb/math/ipm.pdf).
- 2 P. A. Catlin, H.-J. Lai and Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math., 309 (2009), 1033-1040.
- 3 S. M. Cioabă and W.Wong, Edge-disjoint spanning trees and eigenvalues of regular graphs, Linear Algebra Appl., 437 (2012) 630-647.
- 4 W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226/228 (1995), 593-616.
- 5 G. Li and L. Shi, Edge-disjoint spanning trees and eigenvalues of graphs, Linear Algebra Appl. 439 (2013), 2784-2789.

6 X. Gu, H. Lai, P. Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29.

- 6 X. Gu, H. Lai, P. Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29.
- 7 Q. Liu, Y. Hong, H. Lai, Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 444 (2014) 146-151.

- 6 X. Gu, H. Lai, P. Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29.
- 7 Q. Liu, Y. Hong, H. Lai, Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 444 (2014) 146-151.
- 8 Q. Liu, Y. Hong, X. Gu, H. Lai, Note on Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 458 (2014), 128-133.

- 6 X. Gu, H. Lai, P. Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29.
- 7 Q. Liu, Y. Hong, H. Lai, Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 444 (2014) 146-151.
- 8 Q. Liu, Y. Hong, X. Gu, H. Lai, Note on Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 458 (2014), 128-133.
- 9 Y. Hong, X. Gu, H. Lai, Q. Liu, Fractional spanning tree packing, forest covering and eigenvalues, Discrete Applied Math., 213 (2016) 219-223.

- 6 X. Gu, H. Lai, P. Li, S. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory, 81 (2016) 16-29.
- 7 Q. Liu, Y. Hong, H. Lai, Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 444 (2014) 146-151.
- 8 Q. Liu, Y. Hong, X. Gu, H. Lai, Note on Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl., 458 (2014), 128-133.
- 9 Y. Hong, X. Gu, H. Lai, Q. Liu, Fractional spanning tree packing, forest covering and eigenvalues, Discrete Applied Math., 213 (2016) 219-223.

Problem (Abiad, Brimkov, Martĺnez-Rivera, O, and Zhang, Electronic Journal of Linear Algebra, 2018) Find best possible condition on $\lambda_2(G)$ to warrant $\kappa(G) \geq k$.

- Problem (Abiad, Brimkov, Martĺnez-Rivera, O, and Zhang, Electronic Journal of Linear Algebra, 2018) Find best possible condition on $\lambda_2(G)$ to warrant $\kappa(G) \geq k$.
- Let d and k be integers with $d \ge k \ge 2$ and G be a d-regular multigraph. Each of the following holds.

- Problem (Abiad, Brimkov, Martĺnez-Rivera, O, and Zhang, Electronic Journal of Linear Algebra, 2018) Find best possible condition on $\lambda_2(G)$ to warrant $\kappa(G) \geq k$.
- Let d and k be integers with $d \ge k \ge 2$ and G be a d-regular multigraph. Each of the following holds.
- Theorem (Suil O, arXiv:1603.03960v3 [math.CO] 4 Oct 2016.) If $|V(G)| \ge 3$ and If $|V(G)| \ge 3$ and $\lambda_2(G) < \frac{3d}{4}$, then $\kappa(G) \ge 2$.

■ Theorem (B. Brimkov, X. Martĺnez-Rivera, Suil O, J. Zhang, Electronic Journal of Linear Algebra, 2018). Suppose G is not spanned by a complete graph on at most k vertices, and

- Theorem (B. Brimkov, X. Martĺnez-Rivera, Suil O, J. Zhang, Electronic Journal of Linear Algebra, 2018). Suppose G is not spanned by a complete graph on at most k vertices, and
- let

$$f(d,k) = \begin{cases} 3 & \text{if } G \text{ is a multigraph and } k = 2; \\ k & \text{if } G \text{ is a multigraph and } k \geq 3; \\ d+2 & \text{if } G \text{ is a simple graph and } k = 2; \\ d+1 & \text{if } G \text{ is a simple graph and } k \geq 3. \end{cases}$$

- Theorem (B. Brimkov, X. Martĺnez-Rivera, Suil O, J. Zhang, Electronic Journal of Linear Algebra, 2018). Suppose G is not spanned by a complete graph on at most k vertices, and
- let

$$f(d,k) = \left\{ \begin{array}{ll} 3 & \text{if } G \text{ is a multigraph and } k = 2; \\ k & \text{if } G \text{ is a multigraph and } k \geq 3; \\ d+2 & \text{if } G \text{ is a simple graph and } k = 2; \\ d+1 & \text{if } G \text{ is a simple graph and } k \geq 3. \end{array} \right.$$

If
$$\lambda_2(G) < d - \frac{(k-1)d}{2f(d,k)} - \frac{(k-1)d}{2(n-f(d,k))}$$
, then $\kappa(G) \ge k$

- Theorem (B. Brimkov, X. Martĺnez-Rivera, Suil O, J. Zhang, Electronic Journal of Linear Algebra, 2018). Suppose G is not spanned by a complete graph on at most k vertices, and
- let

$$f(d,k) = \left\{ \begin{array}{ll} 3 & \text{if } G \text{ is a multigraph and } k = 2; \\ k & \text{if } G \text{ is a multigraph and } k \geq 3; \\ d+2 & \text{if } G \text{ is a simple graph and } k = 2; \\ d+1 & \text{if } G \text{ is a simple graph and } k \geq 3. \end{array} \right.$$

If
$$\lambda_2(G) < d - \frac{(k-1)d}{2f(d,k)} - \frac{(k-1)d}{2(n-f(d,k))}$$
, then $\kappa(G) \ge k$

Our goal: to study the relationship between connectivity and adjacency eigenvalues, algebraic connectivity (laplacian eigenvalues) and signless laplacian eigenvalues.

- Our goal: to study the relationship between connectivity and adjacency eigenvalues, algebraic connectivity (laplacian eigenvalues) and signless laplacian eigenvalues.
- We continuer using the matrix aD + A.

- Our goal: to study the relationship between connectivity and adjacency eigenvalues, algebraic connectivity (laplacian eigenvalues) and signless laplacian eigenvalues.
- We continuer using the matrix aD + A.
- $\lambda_1(G,a) \geq \lambda_2(G,a) \geq \cdots \geq \lambda_n(G,a)$ are eigenvalues of aD+A.

Given integers Δ , δ , k and g with $\Delta \geq \delta \geq k \geq 2$, $g \geq 3$ and $1 \leq c \leq k-1$, we have the following definition.

- Given integers Δ , δ , k and g with $\Delta \geq \delta \geq k \geq 2$, $g \geq 3$ and $1 \leq c \leq k-1$, we have the following definition.
- $\blacksquare t = \lfloor \frac{g-1}{2} \rfloor,$

- Given integers Δ , δ , k and g with $\Delta \geq \delta \geq k \geq 2$, $g \geq 3$ and $1 \leq c \leq k-1$, we have the following definition.
- $\blacksquare t = \lfloor \frac{g-1}{2} \rfloor,$
- $\nu = \nu(\delta, g, c) =$

$$\begin{cases} 1+(\delta-c)\sum_{i=0}^{t-1}(\delta-1)^i, & \text{if } g=2t+1 \text{ and } c \leq k-1 \leq \delta-2; \\ 1+2(\delta-1)^{t-1}+\sum_{i=0}^{t-2}(\delta-1)^i, & \text{if } g=2t+1 \text{ and } c=k-1=\delta-1; \\ 2+(2\delta-2-c)\sum_{i=0}^{t-1}(\delta-1)^i, & \text{if } g=2t+2 \text{ and } \delta \geq 3; \\ 2t+1, & \text{if } g=2t+2 \text{ and } \delta=2. \end{cases}$$

- Given integers Δ, δ, k and g with $\Delta \geq \delta \geq k \geq 2$, $g \geq 3$ and $1 \leq c \leq k 1$, we have the following definition.
- $\blacksquare t = \lfloor \frac{g-1}{2} \rfloor,$
- $\nu = \nu(\delta, g, c) =$

$$\begin{cases} 1+(\delta-c)\sum_{i=0}^{t-1}(\delta-1)^i, & \text{if } g=2t+1 \text{ and } c \leq k-1 \leq \delta-2; \\ 1+2(\delta-1)^{t-1}+\sum_{i=0}^{t-2}(\delta-1)^i, & \text{if } g=2t+1 \text{ and } c=k-1=\delta-1; \\ 2+(2\delta-2-c)\sum_{i=0}^{t-1}(\delta-1)^i, & \text{if } g=2t+2 \text{ and } \delta \geq 3; \\ 2t+1, & \text{if } g=2t+2 \text{ and } \delta=2. \end{cases}$$

Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) Each of the following holds.

(i) If
$$\lambda_2(G, a) < (a+1)\delta - \frac{(k-1)\Delta n}{2\nu(\delta, g, k-1)(n-\nu(\delta, g, k-1))}$$
, then $\kappa(G) \ge k$.
(ii) If $\lambda_2(G, a) < (a+1)\delta - \frac{(k-1)\Delta}{\nu(\delta, g, k-1)}$, then $\kappa(G) \ge k$.

Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) If $\lambda_2(G,a) < (a+1)\delta - \frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}, \text{ then } \kappa(G) \geq k.$

- Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) If $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}, \text{ then } \kappa(G) \geq k.$
- Corollary For any $\epsilon>0$, there exists an integer N such that for any $n\geq N$, if $\lambda_2(G,a)<(a+1)\delta-\frac{(k-1)\Delta(1+\epsilon)}{2\nu(\delta,g,k-1)}$, then $\kappa(G)\geq k$.

- Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) If $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}, \text{ then } \kappa(G) \geq k.$
- Corollary For any $\epsilon > 0$, there exists an integer N such that for any $n \geq N$, if $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta(1+\epsilon)}{2\nu(\delta,q,k-1)}$, then $\kappa(G) \geq k$.
- Proof. Since $\nu = \nu(\delta, g, k-1) > 0$, and since

- Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) If $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}, \text{ then } \kappa(G) \geq k.$
- Corollary For any $\epsilon>0$, there exists an integer N such that for any $n\geq N$, if $\lambda_2(G,a)<(a+1)\delta-\frac{(k-1)\Delta(1+\epsilon)}{2\nu(\delta,q,k-1)}$, then $\kappa(G)\geq k$.
- Proof. Since $\nu = \nu(\delta, g, k-1) > 0$, and since
- $\lim_{n \to \infty} \frac{n}{n \nu} = 1.$

- Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) If $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}, \text{ then } \kappa(G) \geq k.$
- Corollary For any $\epsilon>0$, there exists an integer N such that for any $n\geq N$, if $\lambda_2(G,a)<(a+1)\delta-\frac{(k-1)\Delta(1+\epsilon)}{2\nu(\delta,g,k-1)}$, then $\kappa(G)\geq k$.
- Proof. Since $\nu = \nu(\delta, g, k-1) > 0$, and since
- $\lim_{n \to \infty} \frac{n}{n \nu} = 1.$
- For any $\epsilon > 0$, there exists an integer N such that for any $n \geq N$,

- Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) If $\lambda_2(G,a)<(a+1)\delta-\frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}, \text{ then } \kappa(G)\geq k.$
- Corollary For any $\epsilon > 0$, there exists an integer N such that for any $n \geq N$, if $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta(1+\epsilon)}{2\nu(\delta,q,k-1)}$, then $\kappa(G) \geq k$.
- Proof. Since $\nu = \nu(\delta, g, k-1) > 0$, and since
- $\lim_{n \to \infty} \frac{n}{n \nu} = 1.$
- For any $\epsilon > 0$, there exists an integer N such that for any $n \geq N$,
- $1 < \frac{n}{n-\nu} \le 1 + \epsilon.$

- Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) If $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}, \text{ then } \kappa(G) \geq k.$
- Corollary For any $\epsilon > 0$, there exists an integer N such that for any $n \geq N$, if $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta(1+\epsilon)}{2\nu(\delta,q,k-1)}$, then $\kappa(G) \geq k$.
- Proof. Since $\nu = \nu(\delta, g, k-1) > 0$, and since
- $\lim_{n \to \infty} \frac{n}{n \nu} = 1.$
- For any $\epsilon > 0$, there exists an integer N such that for any $n \geq N$,
- $1 < \frac{n}{n-\nu} \le 1 + \epsilon.$

- Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) If $\lambda_2(G,a) < (a+1)\delta \frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}, \text{ then } \kappa(G) \geq k.$
- Corollary For any $\epsilon>0$, there exists an integer N such that for any $n\geq N$, if $\lambda_2(G,a)<(a+1)\delta-\frac{(k-1)\Delta(1+\epsilon)}{2\nu(\delta,q,k-1)}$, then $\kappa(G)\geq k$.
- Proof. Since $\nu = \nu(\delta, g, k-1) > 0$, and since
- For any $\epsilon > 0$, there exists an integer N such that for any $n \geq N$,
- $1 < \frac{n}{n-\nu} \le 1 + \epsilon.$

Let Δ, δ, k and g be integers with $\Delta \geq \delta \geq k \geq 2$, $g \geq 3$ and $1 \leq c \leq k-1$.

- Let Δ, δ, k and g be integers with $\Delta \geq \delta \geq k \geq 2$, $g \geq 3$ and $1 \leq c \leq k-1$.
- Define $\alpha = \lceil \frac{\delta + 1 + \sqrt{(\delta + 1)^2 2(k 1)\Delta}}{2} \rceil$, and

- Let Δ, δ, k and g be integers with $\Delta \geq \delta \geq k \geq 2$, $g \geq 3$ and $1 \leq c \leq k-1$.
- Define $\alpha = \lceil \frac{\delta + 1 + \sqrt{(\delta + 1)^2 2(k 1)\Delta}}{2} \rceil$, and

$$\phi = \phi(\delta, \Delta, k) = \begin{cases} (\delta - k + 2)(n - \delta + k - 2), & \text{if } \Delta \ge 2(\delta - k + 2); \\ \alpha(n - \alpha), & \text{if } \delta \le \Delta < 2(\delta - k + 2). \end{cases}$$

- Let Δ, δ, k and g be integers with $\Delta \geq \delta \geq k \geq 2$, $g \geq 3$ and $1 \leq c \leq k-1$.
- Define $\alpha = \lceil \frac{\delta + 1 + \sqrt{(\delta + 1)^2 2(k 1)\Delta}}{2} \rceil$, and

$$\phi = \phi(\delta, \Delta, k) = \begin{cases} (\delta - k + 2)(n - \delta + k - 2), & \text{if } \Delta \ge 2(\delta - k + 2); \\ \alpha(n - \alpha), & \text{if } \delta \le \Delta < 2(\delta - k + 2). \end{cases}$$

- Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) Each of the following holds.
 - (i) If $\lambda_2(G) < \delta \frac{(k-1)\Delta n}{2\phi(\delta,\Delta,k)}$, then $\kappa(G) \geq k$.
 - (ii) If $\mu_{n-1}(G) > \frac{(k-1)\Delta n}{2\phi(\delta,\Delta,k)}$, then $\kappa(G) \geq k$.
 - (iii) If $q_2(G) < 2\delta \frac{(k-1)\Delta n}{2\phi(\delta,\Delta,k)}$, then $\kappa(G) \geq k$.

■ We need to modify the Useful Lemma.

- We need to modify the Useful Lemma.

- We need to modify the Useful Lemma.
- $\blacksquare t = \lfloor \frac{g-1}{2} \rfloor,$
- $\nu = \nu(\delta, g, c) =$

$$\begin{cases} 1+(\delta-c)\sum_{i=0}^{t-1}(\delta-1)^i, & \text{if } g=2t+1 \text{ and } c \leq k-1 \leq \delta-2; \\ 1+2(\delta-1)^{t-1}+\sum_{i=0}^{t-2}(\delta-1)^i, & \text{if } g=2t+1 \text{ and } c=k-1=\delta-1; \\ 2+(2\delta-2-c)\sum_{i=0}^{t-1}(\delta-1)^i, & \text{if } g=2t+2 \text{ and } \delta \geq 3; \\ 2t+1, & \text{if } g=2t+2 \text{ and } \delta=2. \end{cases}$$

- We need to modify the Useful Lemma.
- $\blacksquare t = \lfloor \frac{g-1}{2} \rfloor,$
- $\nu = \nu(\delta, g, c) =$

$$\begin{cases} 1+(\delta-c)\sum_{i=0}^{t-1}(\delta-1)^i, & \text{if } g=2t+1 \text{ and } c\leq k-1\leq \delta-2; \\ 1+2(\delta-1)^{t-1}+\sum_{i=0}^{t-2}(\delta-1)^i, & \text{if } g=2t+1 \text{ and } c=k-1=\delta-1; \\ 2+(2\delta-2-c)\sum_{i=0}^{t-1}(\delta-1)^i, & \text{if } g=2t+2 \text{ and } \delta\geq 3; \\ 2t+1, & \text{if } g=2t+2 \text{ and } \delta=2. \end{cases}$$

New Useful Lemma. Let G be a simple connected graph with $\delta = \delta(G) \ge k \ge 2$ and girth $g = g(G) \ge 3$. Let C be a minimum vertex cut of G with |C| = c and U be a connected component of G - C. If $c \le k - 1 < \delta$, then $|V(U)| \ge \nu(\delta, g, c)$.

■ Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) Each of the following holds.

(i) If
$$\lambda_2(G,a) < (a+1)\delta - \frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}$$
, then $\kappa(G) \ge k$.

(ii) If
$$\lambda_2(G,a) < (a+1)\delta - \frac{(k-1)\Delta}{\nu(\delta,g,k-1)}$$
, then $\kappa(G) \ge k$.

■ Theorem (R. Liu, Y. Tian, Y. Wu and HJL, AMC 2019) Each of the following holds.

(i) If
$$\lambda_2(G,a)<(a+1)\delta-\frac{(k-1)\Delta n}{2\nu(\delta,g,k-1)(n-\nu(\delta,g,k-1))}$$
, then $\kappa(G)\geq k$.

(ii) If
$$\lambda_2(G,a) < (a+1)\delta - \frac{(k-1)\Delta}{\nu(\delta,g,k-1)}$$
, then $\kappa(G) \ge k$.

■ By contradiction, we assume $\kappa(G) = c \le k - 1$.

lacksquare C:= a minimum vertex cut of G, $|C|=c\leq k-1\leq \delta-1$.

- \blacksquare C:= a minimum vertex cut of G, $|C| = c \le k 1 \le \delta 1$.
- Notation: For subsets $X, Y \subset V(G)$, e(X, Y):= number of edges in G linking a vertex in X and a vertex in Y.

- \blacksquare C:= a minimum vertex cut of G, $|C| = c \le k 1 \le \delta 1$.
- Notation: For subsets $X, Y \subset V(G)$, e(X, Y):= number of edges in G linking a vertex in X and a vertex in Y.
- \blacksquare A:= a connected component of G-C, $m_1=e(A,C)=d(A)$.

- \blacksquare C:= a minimum vertex cut of G, $|C| = c \le k 1 \le \delta 1$.
- Notation: For subsets $X, Y \subset V(G)$, e(X, Y):= number of edges in G linking a vertex in X and a vertex in Y.
- \blacksquare A:= a connected component of G-C, $m_1=e(A,C)=d(A)$.
- $\blacksquare B := G (V(A) \cup C), m_2 = e(B, C), \text{ and } \overline{A} = V(G) A.$

- \blacksquare C:= a minimum vertex cut of G, $|C| = c \le k 1 \le \delta 1$.
- Notation: For subsets $X, Y \subset V(G)$, e(X, Y):= number of edges in G linking a vertex in X and a vertex in Y.
- \blacksquare A:= a connected component of G-C, $m_1=e(A,C)=d(A)$.
- $\blacksquare B := G (V(A) \cup C), m_2 = e(B, C), \text{ and } \overline{A} = V(G) A.$
- $u = \nu(\delta, g, k 1), |A| = n_1 \text{ and } |B| = n_2.$

- \blacksquare C:= a minimum vertex cut of G, $|C| = c \le k 1 \le \delta 1$.
- Notation: For subsets $X, Y \subset V(G)$, e(X, Y):= number of edges in G linking a vertex in X and a vertex in Y.
- \blacksquare A:= a connected component of G-C, $m_1=e(A,C)=d(A)$.
- $\blacksquare B := G (V(A) \cup C), m_2 = e(B, C), \text{ and } \overline{A} = V(G) A.$
- $u = \nu(\delta, g, k 1), |A| = n_1 \text{ and } |B| = n_2.$
- By New Useful Lemma, $\nu \leq \min\{n_1, n_2\} \leq \frac{n}{2} \leq n \nu$.

- \blacksquare C:= a minimum vertex cut of G, $|C| = c \le k 1 \le \delta 1$.
- Notation: For subsets $X, Y \subset V(G)$, e(X, Y):= number of edges in G linking a vertex in X and a vertex in Y.
- \blacksquare A:= a connected component of G-C, $m_1=e(A,C)=d(A)$.
- $\blacksquare B := G (V(A) \cup C), m_2 = e(B, C), \text{ and } \overline{A} = V(G) A.$
- $u = \nu(\delta, g, k 1), |A| = n_1 \text{ and } |B| = n_2.$
- By New Useful Lemma, $\nu \leq \min\{n_1, n_2\} \leq \frac{n}{2} \leq n \nu$.

Let
$$\bar{d_1}=rac{1}{n_1}\sum_{v\in A}d_G(v)$$
 and $\bar{d_2}=rac{1}{n_2+c}\sum_{v\in\overline{A}}d_G(v).$

- Let $\bar{d_1} = \frac{1}{n_1} \sum_{v \in A} d_G(v)$ and $\bar{d_2} = \frac{1}{n_2 + c} \sum_{v \in \overline{A}} d_G(v)$.
- he quotient matrix of aD + A corresponding to the partition $(A, C \cup B)$ becomes:

- Let $\bar{d_1}=rac{1}{n_1}\sum_{v\in A}d_G(v)$ and $\bar{d_2}=rac{1}{n_2+c}\sum_{v\in \overline{A}}d_G(v)$.
- he quotient matrix of aD + A corresponding to the partition $(A, C \cup B)$ becomes:
 - $R(aD+A) = \begin{pmatrix} (a+1)\bar{d_1} \frac{m_1}{n_1} & \frac{m_1}{n_1} \\ \frac{m_1}{n_2+c} & (a+1)\bar{d_2} \frac{m_1}{n_2+c} \end{pmatrix}.$

- Let $\bar{d_1} = \frac{1}{n_1} \sum_{v \in A} d_G(v)$ and $\bar{d_2} = \frac{1}{n_2 + c} \sum_{v \in \overline{A}} d_G(v)$.
- he quotient matrix of aD + A corresponding to the partition $(A, C \cup B)$ becomes:

$$R(aD+A) = \begin{pmatrix} (a+1)\bar{d_1} - \frac{m_1}{n_1} & \frac{m_1}{n_1} \\ \frac{m_1}{n_2+c} & (a+1)\bar{d_2} - \frac{m_1}{n_2+c} \end{pmatrix}.$$

Apply $n \geq 2\nu$ or $\frac{n}{2(n-\nu)} \leq 1$ and algebra,

- Let $\bar{d_1} = \frac{1}{n_1} \sum_{v \in A} d_G(v)$ and $\bar{d_2} = \frac{1}{n_2 + c} \sum_{v \in \overline{A}} d_G(v)$.
- he quotient matrix of aD + A corresponding to the partition $(A, C \cup B)$ becomes:

$$R(aD+A) = \begin{pmatrix} (a+1)\bar{d_1} - \frac{m_1}{n_1} & \frac{m_1}{n_1} \\ \frac{m_1}{n_2+c} & (a+1)\bar{d_2} - \frac{m_1}{n_2+c} \end{pmatrix}.$$

- Apply $n \geq 2\nu$ or $\frac{n}{2(n-\nu)} \leq 1$ and algebra,
- to conclude

$$\lambda_2(R(aD+A)) \ge (a+1)\delta - \frac{(k-1)\Delta n}{2\nu(n-\nu)}.$$

Given two sequences $\theta_1 \geq \theta_2 \geq \cdots \theta_n$ and $\eta_1 \geq \eta_2 \geq \cdots \geq \eta_m$ with n > m, the second sequence interlaces the first if $\theta_i \geq \eta_i \geq \theta_{n-m+i}$, for $1 \leq i \leq m$.

- Given two sequences $\theta_1 \geq \theta_2 \geq \cdots \theta_n$ and $\eta_1 \geq \eta_2 \geq \cdots \geq \eta_m$ with n > m, the second sequence interlaces the first if $\theta_i \geq \eta_i \geq \theta_{n-m+i}$, for $1 \leq i \leq m$.
- Theorem (Haemers, LAA 1995) Eigenvalues of any quotient matrix of *G* interlace the eigenvalues of *G*.

- Given two sequences $\theta_1 \geq \theta_2 \geq \cdots \theta_n$ and $\eta_1 \geq \eta_2 \geq \cdots \geq \eta_m$ with n > m, the second sequence interlaces the first if $\theta_i \geq \eta_i \geq \theta_{n-m+i}$, for $1 \leq i \leq m$.
- Theorem (Haemers, LAA 1995) Eigenvalues of any quotient matrix of *G* interlace the eigenvalues of *G*.
- By interlacing (we have a contradiction)

$$\lambda_2(aD+A) \ge \lambda_2(R(aD+A)) \ge (a+1)\delta - \frac{(k-1)\Delta n}{2\nu(n-\nu)}.$$

Thank You