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Background on D-Wave

The D-Wave quantum annealer is a hardware realization of classical (thermal)
simulated annealing, a wide-spread optimization technique which minimizes a
function by proposing random moves to escape local minima:

Classical
thermal
annealing

Quantum
annealing

On the D-Wave chip, qubits are connected in a
graph structure allowing for pairwise interactions:

D-Wave minimizes a sum of linear and quadratic contributions
weighted by given constants ai, aij ∈ ℝ, called Hamiltonian:

Ising: qi ∈ {-1,+1}                                Qubo: qi ∈ {0,+1} 

The Maximum Clique Problem
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We consider maximum clique (MC), a classical NP-hard graph problem.

Let G = (V,E) be an undirected graph. A clique is a subset S ⊆ V
forming a complete subgraph (any two vertices of S are connected
by an edge in G). A maximal clique is a clique of maximal size.

D-Wave Solvers

D-Wave Inc. provide tools to submit Qubo/Ising problems to the annealer, to
perform the annealing and to post-process the output:

► Sapi: “Solver API”, highest level control, set annealing cycles or post-
     processing, load pre-computed embeddings for complete 45 vertex graphs

► QBsolv: heuristic for instances ≥ 1000 qubits, identifies signif.
       rows/columns of Hamiltonian, solves subproblem on D-Wave

► QSage: black-box solver for bitstrings of arbitrary size,
        tabu search enhanced with DW-generated samples

Classical Solvers

We benchmark against the following
   classical approaches:

► SA-Ising: All-purpose simulated
      annealing.

► SA-clique: Simulated annealing
  specifically for cliques of size m
    (Geng et al., 2007).

► Fast Max-Clique Finder
  (fmc, pmc): Exact and heuristic
  efficient search algorithms for
  max. cliques in sparse graphs.

  ► Post-processing heuristics
   alone (PPHa): D-Wave’s server-
   side post-processing step applied
   to random initial solution.

           ► Gurobi: Mathematical pro-
          gramming solver for linear,
        mixed-integer and quadratic
      programs (Gurobi Optimization Inc.,
    2015). Applied to the dual of
   maximum clique (maximum
independent set) on the complement graph.
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Qubo for Maximum Clique

f(q) = ∑aiqi + ∑aijqiqj
i∈V (i,j)∈E

We use the equivalence of MC to maximum independent set problem:
     For a graph H, S is independent set if any two vertices v,w ∈ S are not connected in H.

maximize  ∑xi
i=1

N

xi∈{0,1}

 An independent set of H = (V, E) is a clique in G = (V, E). Constrained minimization:
_

subject to ∑xixj = 0
(i,j)∈E

_

The equivalent formulation as uncontrained minimization (Qubo):

H = -A ∑ xi + B ∑ xixj
i=1

N

(i,j)∈E
_

with A = 1 and B = 2 (Lucas, 2014).
Disadvantage: O(N2) quad. terms, limited D-Wave solubility. Experiments:

Small graphs
with no special structure

Graph Max. clique Runtime [s]
size Sapi PPHa QBsolv fmc pmc SA Gurobi

p= 0.3 5 0.15 0.15 0.05 8 · 10− 6 3 · 10− 5 0.15 102
p= 0.5 8 0.15 0.15 0.06 3 · 10− 4 5 · 10− 5 0.37 38
p= 0.7 13 0.15 0.15 0.04 0.002 8.10− 5 0.19 33
p= 0.9 20 0.15 0.15 0.04 0.135 8.10− 5 0.28 2

Set-up: 45 vertex graphs, random edges with probability p

Results: Every software solver returns correct solution on
small random graphs fitting D-Wave's architecture.

Gurobi solves the dual problem (maximum independent set)
thus leading to reversed graph densities and timings.

Main observations: pmc is an order of magnitude faster
       than all other methods, D-Wave yields constant time
              solutions but no quantum speed-up detectable.

Experiments: Chimera-like graphs
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Motivation: So far no quantum advantage
on small graphs. Need comparison on
graphs larger than 45 vertices.

Set-up: Use chimera subgraphs
generated by contracting edges
which always fit the D-Wave
topology.

Results: Up to size 400, PPHa finds same result
  as D-Wave. For size larger than 800,
    D-Wave is best.

Experiments: D-Wave vs SA-clique
Why SA-clique? SA-clique is considered the classical analogue
  of quantum annealing and thus the closest competitor to D-Wave.

    Set-up: 500 anneals on D-Wave
       on (contracted) chimera
         graphs, record best solution,
            then lower cooling
               schedule of SA-clique
                 until same solution
                    is found.
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Solving large MC instances
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Idea: Remove edges not
belonging to a maximum
clique and split into subgraphs
of at most 45 vertices.

► Extract k-core: maximal subgraph whose vertices have degree ≥ k;
any clique C of size k+1 of G is also a clique of the k-core
► Graph partitioning: divide G into cores Ci and distance one neighbors
Hi (halo); maximal clique is equal to the max clique in one of the partitions
► Vertex splitting: like partitioning but with C1={v} for v ∈ V and C2 = V \ {v}

Algorithm: Start with list L={G} and iterate until subgraphs fit DW:

5000 10000 15000 20000

0
10

0
20

0
30

0
40

0
50

0

graph size |V|

av. degree = 50
av. degree = 100
av. degree = 200

Set-up (left):
500 vertices, edge
probability p from 0.1
to 0.4 in steps of 0.05

Set-up (right): graph
sizes 3000 to 20000,
fixed degree d,
edge probability
p = d/(|V | − 1)
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Conclusions:
► Random graphs: too small, optimized classical
        solvers faster, DW solutions of comparable quality
                 ► No quantum advantage for general
                           instances embeddable on DW
                                    ► Special instances designed to fit
                                             DW can be magnitudes faster
                                                         (closer to DW chimera
                                                                        topology=faster)

Applications: network analysis, bioinformatics, computational chemistry.


