
MFPS 2006

Bunching for Regions and Locations

Matthew Collinson 1,2

Department of Computer Science
University of Bath

Bath, United Kingdom

David Pym 1,3

Hewlett-Packard Laboratories
Bristol, United Kingdom

Abstract

There are a number of applied lambda-calculi in which terms and types are anno-
tated with parameters denoting either locations or locations in machine memory.
Such calculi have been designed with safe memory-management operations in mind.

It is difficult to construct directly denotational models for existing calculi of this
kind. We approach the problem differently, by starting from a class of mathematical
models that describe some of the essential semantic properties intended in these
calculi. In particular, disjointness conditions between regions (or locations) are
implicit in many of the memory-management operations.

Bunched polymorphism provides natural type-theoretic mechanisms for capturing
the disjointness conditions in such models. We illustrate this by adding regions to
the basic disjointness model of αλ, the lambda-calculus associated to the logic of
bunched implications. We show how both additive and multiplicative polymorphic
quantifiers arise naturally in our models. A locations model is a special case. In
order to relate this enterprise back to previous work on memory-management, we
provide an example in which the model is refined and used to provide a denotational
semantics for a language with explicit allocation and disposal of regions.

Key words: Denotational semantics, type, polymorphism, logic of
bunched implications, region, location, reference.

1 This research was partially supported by the UK EPSRC grant ‘Bunched ML’.
2 Email: cssmc@cs.bath.ac.uk
3 Email: david.pym@hp.com

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Collinson and Pym

1 Introduction

In recent years, there has been an upsurge of interest in the use of regions
amongst the types, semantics and programming language communities. This
interest can be traced back to the influential papers by Lucassen and Gifford
[12] and Tofte and Talpin [25].

The system of [12] was designed to provide an analysis of side-effects in
languages that combine functional and imperative programming. The side-
effects were concerned with changes to machine state induced by evaluating
expressions containing references. Regions were introduced to describe the
area of store in which side-effects of expressions occur. This gave control
over how the side-effects of various sub-expressions of some larger expression
interact. Regions were taken to be infinite and references could be allocated,
read and updated. In particular, references were always allocated within a
specific, named region by the programmer.

Most of the current work on regions is on type systems for memory-
management. Such type systems are intended to be a way of recycling unused
memory earlier than would be done by a garbage-collector and in such a way
that it is easy to see when memory has been allocated and deallocated. A
recent survey of region-based memory-management can be found in [10]. In
common with the languages described there, our type systems enjoy the so-
called region-safety property; that is, there are no accesses to unallocated or
deallocated regions occur at run time.

In [25], (almost) all values of an ML-like language are put in regions. This
is done by a translation to a language in which expressions are annotated with
region variables. The scopes of these region variables are then delimited by a
certain kind of let expression. At runtime, these region variables are mapped
to actual regions. For example, a value-creating program M is (roughly)
translated into an annotated program letreg ρ in M ′ at ρ end, where M ′ is
formed by suitably translating sub-expressions of M . When this is executed,
first a region of memory (corresponding to ρ) is allocated, M ′ is evaluated
(storing and retrieving values from ρ), then ρ is deallocated. Since letreg is
the only construct for allocating and deallocating regions, a stack discipline
for regions is enforced. An important part of this system is the existence of
functions which are polymorphic in their region variables.

Later, the alias type family of languages was developed — see Walker and
Morrisett [28] — also with safe operations for memory-management in mind.
The types in these systems typically contain location parameters.

A key concept in this paper is that of location. For our present purposes,
the principal properties that we need to capture are that a location is an
indivisible part of machine memory and that values of arbitrary size may be
stored at a location. Thus our conception of location is a (limited) abstraction
of, for example, formulations in which large values are stored using multiple
linked memory addresses. A region is simply a set of locations in machine

2

Collinson and Pym

memory. Regions may overlap. Following, for example, [12], a reference is to
a location within a specified region. Thus our characterization of locations
and regions obtains at a level of abstraction similar to that of resources in
the semantics of BI [18,17], the mathematical structure of which captures the
view that the essential properties of resources at that level of abstraction are
their composability and comparability.

Region and location systems are usually presented together with a detailed
operational semantics. These are often rather complicated, but various safety
properties can nevertheless be verified. On the other hand, denotational mod-
els of region and location languages are almost never presented — an exception
is Banerjee, Heintze and Riecke [1]. Recently Morrisett, Ahmed and Fluet [13]
have also taken some steps in that direction. We believe that mathematical
models are no less important for these languages than they are for any other.
The usual arguments for denotational semantics in terms of conceptual clarity,
abstract correctness criteria and methods for proving equivalence of programs
(possibly in different implementations or even languages) all hold in this set-
ting; see Scott and Strachey [21].

In this paper, we approach memory-management from a denotational view-
point. We present techniques for building models of type-systems in which
region and location parameters are present in types. The two key techniques
are the use of bunched polymorphism and the construction of models that are
indexed categories over a base of regions.

The point of bunched polymorphism is to provide additive and multiplica-
tive variants of polymorphic quantification within a single lambda-calculus.
Theoretical aspects were studied in Collinson, Pym, and Robinson [3]. In that
paper, a definition of categorical model was given. These consist of variants
of hyperdoctrines for polymorphism [22] together with extra structure to in-
tepret the multiplicatives. Thus the fibres of the underlying indexed category
consist of doubly-closed categories, while the base has an additional monoidal
structure to interpret the multiplicative combination of type variables. The
monoid also supports a kind of weak projection and this enables one to define
the functor that models the multiplicative quantifier as the right-adjoint to
the induced substitution. Soundness and completeness theorems are given. A
model based on partial equivalence relations was given: the indexed category
has pairs of pers in the fibres.

We are concerned herein with a simpler situation, in which we have region
rather than type variables. This enables us to give a more concrete resource
reading to the bunched polymorphic quantifiers. From a logical perspective
this constitutes a step down from second-order propositional to second-order
predicate quantification. In models such as those we present, the additive
quantifier turns out to be ordinary second-order quantification: it says ‘for all
predicates’ in the model. This gives a mechanism for treating region polymor-
phic functions. The multiplicative quantifier also has an appealing and useful
character. It may be read as saying ‘for all new predicates’, where ‘new’ means

3

Collinson and Pym

disjoint from the predicates used to interpret the scope of the quantifier. We
put this multiplicative quantifier to good use.

Disjointness properties are crucial to the allocation and deallocation of
regions. When a region is allocated, it is assumed that it is disjoint from all
previously allocated regions. After a region is deallocated, there should be no
use of any of its locations, and so it must be disjoint from all the regions used
by the remainder of the computation. Implicit disjointness conditions between
region variables may be captured using the syntax of bunched polymorphism.
Similar comments apply to calculi with location variables.

We present a method of constructing models (indexing over a certain cat-
egory) which is quite general. The particular models we use as examples are
constructed from the basic disjointness model (BDM) of O’Hearn [14] for αλ,
the lambda calculus associated with the bunched logic, BI, of O’Hearn and
Pym [15,18]. The BDM is a relative both of Reynolds-Oles functor category
semantics [16,19], and of the heap semantics of separation logic, see Reynolds
[20]. In the BDM, types are denoted by variable sets (presheaves). These are
sets parametrized by sets of machine locations. The way locations are used
makes it an obvious setting to attempt regioning. The fact that it supports
αλ helps to develop a language for references.

As this is a first attempt to construct simple denotational models of regions
we do not expect to retain all the useful properties of pre-existing region and
location languages.

We begin by presenting a modification of the bunched polymorphic lambda
calculus introduced by Collinson, Pym, and Robinson [3]. We review the BDM
and its notion of state. We define regions and the category of realms (bunches
of region variables) which is fundamental to our appoach. As an example
of a semantics we show how to construct an indexed category with fibres
based on the BDM and indexing by realms. We describe the interpretation of
additive and multiplicative quantifiers. We show how this specializes to the
case of location variables. We give a suitable modification to the notion of
BDM state. We develop the example in more depth by giving a programming
language with allocation and deallocation of regions. In this language, based
on Berdine and O’Hearn [2], only references are placed in regions. We refine
the BDM with regions to give a semantics and show how it supports the
allocation and deallocation of regions.

We thank Josh Berdine and Peter O’Hearn for discussions and help with
this work. In particular, their language and model in [2] is the starting point
for our language and model for references in regions. Our models are also
descended from the PER models of bunched polymorphism of our earlier joint
work with Edmund Robinson [3]. Finally, we thank the anonymous referees for
providing helpful comments in response to preliminary versions of this work.

4

Collinson and Pym

2 Bunched Region Polymorphism

The calculi we wish to treat in this paper have types containing region variables
and contexts containing bunches of such variables. The set-up of these calculi
follows our earlier treatment of bunched polymorphism [3] for type (rather
than region) variables. The principal syntactic differences between these cases
are in the polymorphic applications: region variables must be instantiated with
regions, whereas type variables may be instantiated with more general types.

This section presents the bunched polymorphic lambda-calculus that forms
the essential functional core of all the type systems we will use in this paper.
The calculus is based on the αλ-calculus corresponding to BI, see [15,18].
Recall that this features contexts that are certain trees, called bunches, with
ordinary variables at the leaves. We extend αλ to a new calculus by adding a
context zone for type variables that also contains bunches.

The extension is orthogonal in the sense that the bunching in the two levels
of variable are entirely independent. There are perfectly sensible calculi that
are bunched in each, but not both, of the context zones. We have chosen a
calculus with bunching at first-order in order to help us develop the language
in Section 4.

Assume a countable collection of region variables, written ρ, possibly with
subscripts, superscripts, primes and a countable collection of (ordinary) vari-
ables, written x, y, z.

The types are generated by the grammar

τ := > | I | ρ ref | τ ∧ τ | τ ∗ τ | τ → τ | τ −−∗ τ | ∀ρ.τ | ∀∗ρ.τ ,

where ρ is a region variable. The operators >, ∧, → and ∀ are the additive
unit, product, function space and polymorphic abstraction (universal quanti-
fier), respectively. There are multiplicative operators for unit I, product ∗,
function space −−∗ and polymorphic abstraction ∀∗. We allow the letters σ, τ
to range over types. A region variable ρ is free in τ if it is not bound by (in
the scope of) a quantifier ∀ρ or ∀∗ρ.

The type ρ ref introduces region variables into the type system. The idea
is that a value with this type will be a reference to some location l in the
region determined by ρ (in a suitable environment). For this first language,
we are not assuming that the location holds some value. Consequently, we
have none of the standard operations for references (dereference, update, allo-
cation, disposal) or regions (allocation, disposal). These will be added when
we elaborate the model in Section 4. Our initial aim is to investigate additive
and multiplicative quantification over region variables and to build a simple
set-theoretic model.

A realm is a bunch of region variables. These are generated as follows

B := ∅ | ρ | B,B | B;B ,

5

Collinson and Pym

subject to the restriction that any region variable may occur at most once in
a bunch. Let B (and variants with primes, subscripts and superscripts) range
over realms.

We write B ` τ and say the type τ is well-formed over (the realm) B when
every free region variable in τ is present in B. In particular this means that
the first-order formations for types (>, ∧, →, I, ∗, −−∗) take place over fixed
realms.

A context is a bunch of typed ordinary variables. These are generated by

Γ := ∅ | ∅∗ | x : τ | Γ,Γ | Γ; Γ ,

with x a variable, τ a type and so that any variable occurs at most once. We
use the letters Γ and ∆ for contexts. The units ∅ and ∅∗ are distinct from
the unit ∅ for realms. Write B ` Γ, and say that the context Γ is well-formed
over B, when B ` τ for each variable x : τ in Γ. Our contexts are just the
contexts of αλ over realms.

Bunches can be regarded as trees with labelled nodes. Bunches are always
subject to a pair of equivalence relations, see [18] and this applies to both our
realms and our contexts. The first equivalence ≡ on bunches is used to build
structural rules that allow us to permute variables in realms or contexts. It
is given by commutative monoid rules for “;”, for “,” and by a congruence to
ensure that the monoid rules can be applied at arbitrary depth in any bunch.
The second relation ∼= is used to control contraction rules. The equivalence
∼= on realms is simply renaming of type variables: B ∼= B′ if B′ can be
obtained from B by renaming bijectively with region variables. The relation
Γ ∼= ∆ between contexts holds just when ∆ can be obtained by relabelling the
variables of the leaves of Γ in a type preserving way: any leaf x : τ of Γ must
correspond to a node y : τ of ∆.

A sub-bunch of a bunch B is a sub-tree B′ such that all leaves of B′ are
leaves of B. Let B(B1 | . . . | Bn) be the notation for a bunch (realm or
context) B with distinct, distinguished sub-bunches B1, . . . , Bn. The bunch
B[B′

1/B1, . . . B
′
n/Bn] is formed by replacing each distinguished bunch Bi in B

with B′
i. We reiterate that variables may only occur once in a context and

that type variables may only occur once in a realm.

The terms of the language are given by the following grammar

M := x | > | I | let I be M in M | 〈M,M〉 | π1M

| π2M |M ∗M | let (x, y) be M in M | λx : τ.M

| app(M,M) | λ∗x : τ.M | app∗(M,M) | Λρ.M

| App(M,ρ) | Λ∗ρ.M | App∗(M,ρ) ,

where ρ is a region variable, τ is a type, B is a realm and x is a variable. We
use the letters M , N for terms.

6

Collinson and Pym

We now attempt to convey the intended meanings behind our language —
these will be made precise when we give denotations. A fundamental idea in
this paper is to use the bunched structure of realms to keep track of assumed
separation between interpretations of region variables. If two region variables
are separated multiplicatively (by a comma) then they denote regions which
do not overlap. On the other hand region variables separated additively may
overlap. In this particular set-up, the parametrization by region variables
enters the language through types ρ ref. This is intended to be the type of
references to locations in ρ. The first-order types >,∧,→, I, ∗,−−∗ have their
standard disjointness readings, see [14] for example. A term M : ∀ρ.τ may be
instantiated with any region to give term App(M,ρ) : τ . Therefore we have
an explicit form of region polymorphism. In contrast, a term M : ∀∗ρ.τ may
be instantiated with any region that is disjoint from all others appearing free
in M and τ . This will enable us to type constants for region allocation and
disposal in Section 4.

Let FV (−) be the set of variables which are in a context (−) or free (not
bound by a lambda abstraction) in a term (−). We use the notation FRV (−)
for the set of region variables which occur free in a realm (−), type (−),
the types of the variables in the context (−) or the type of the term (−),
respectively. In a term App∗(M,ρ), the type variable ρ is free. For each term
M , let µ(M) be the set of region variables that are free and that arise in this
way in M , that is, that are used to instantiate a multiplicative quantifier in a
subterm of M .

The calculus produces (term formation) judgements of the form

B | Γ `M : τ ,

that a term M is well-typed with τ , given the bunch of region variables B and
the bunch of (ordinary) variables Γ. These judgements depend on the well-
formedness of types and contexts over realms. The judgements are derived
according to a system of rules, a representative fragment of which is shown
in Figure 1. In addition to the rules shown, there are introduction and elim-
ination rules for rules for additive (>) and multiplicative (I) units, additive
(∧) and multiplicative (∗) conjunction, additive functions (→), contraction
(C) and equivalence (E) for contexts. These may be found in [3]. All of the
rules, other than the quantifier rules and the realm structurals, use a fixed
realm B. That is to say, they are essentially the familiar rules for αλ, but
parametrized by the realm. Let the side-condition (††) on (∀I) and (∀∗I) be
ρ /∈ FRV (Γ). The elimination rules (∧E), (∗E), (→ E) and (−−∗E) are subject
to the side-condition

(†) µ(N) ∩ FRV (M) = ∅

that requires the separation of certain of the free region variables present.
This side-condition makes substitution of terms M for variables x in terms

7

Collinson and Pym

(Ax)
B ` τ

B | x : τ ` x : τ

B | Γ(∆) ` M : τ B ` ∆′

B | Γ(∆; ∆′) ` M : τ
(W)

(−−∗I)
B | Γ, x : σ ` M : τ

B | Γ ` λ∗x : σ.M : σ −−∗ τ
(†)

B | Γ ` N : σ −−∗ τ B | ∆ ` M : σ

B | Γ,∆ ` app∗(N,M) : τ
(−−∗E)

(∀I)
B; ρ | Γ ` M : τ

B | Γ ` Λρ.M : ∀ρ.τ
(††)

B | Γ ` M : ∀ρ.τ

B; ρ′ | Γ ` App(M,ρ′) : τ [ρ′/ρ]
(∀E)

(∀∗I)
B, ρ | Γ ` M : τ

B | Γ ` Λ∗ρ.M : ∀∗ρ.τ
(††)

B | Γ ` M : ∀∗ρ.τ

B, ρ′ | Γ ` App∗(M,ρ′) : τ [ρ′/ρ]
(∀∗E)

(FW)
B′ | Γ ` M : τ

B(B′) | Γ ` M : τ
(B1 ≡ B′

1)
B1 | Γ ` M : τ

B′
1 | Γ ` M : τ

(FE)

(FC)
B(B1;B′

1) | Γ ` M : τ

B(B1) | Γ[B1/B′
1] ` M [B1/B′

1] : τ [B1/B′
1]

(B1
∼= B′

1)

Fig. 1. Term formations

N an admissible rule over a fixed realm. However, this requires that none
the regions used by M is used to instantiate a multiplicative quantifier in the
formation of N . This makes sense since the region used to form a witness to
such an instantiation may be required to be disjoint from those required for x,
and therefore also M . The corresponding side-conditions on elimination rules
are necessary since subject-reduction requires substitution.

The reductions for this system consist of the reductions for αλ together
with the evident βηζ-rules over a fixed realm, see [3] for details. The crucial
metatheoretic properties (i.e., admissible substitution (cut), normalization,
subject-reduction) of the system all hold: the proofs are simplifications of
those from the type variable case.

3 A Region Disjointness Model

Models for αλ consist of cartesian doubly closed categories (CDCCs). An
important model called the basic disjointness model (BDM) for αλ, is given
in [14]. This model is based on the category of sets together with a category of
sets of machine locations called worlds. It is the simplest of a series of models
for αλ that explain the sharing interpretation of αλ in terms of computations
with machine memory as resource.

In this section, we develop the BDM so that it supports bunched region

8

Collinson and Pym

polymorphism. We call the new model the basic region disjointness model
(BRDM). This is an indexed category, in which the objects of the base are
realms. It is an instance of (a simplification of) the general categorical model
in [3]. The BRDM may be understood, for the most part, without knowledge
of indexed categories since most of the constructions are really just about
families of sets and functions.

3.1 The Basic Disjointness Model

The construction in [14] begins with a given infinite set, Loc, of locations. A
world is a finite set of locations. Let W = Pf (Loc) be the set of all worlds.
This is also regarded as a discrete category under the same name.

The BDM is based on the functor category SetW , where Set is the category
of sets and functions. Objects are used to denote the types and morphisms
the terms of αλ.

The cartesian closed structure is given pointwise and this is used to in-
terpret the additive product and function types. The other monoidal closed
structure (used to interpret the multiplicative products and function types) is
slightly more involved. A partial, binary operation ∗ on W is defined by

V ∗W =

V ∪W if V ∩W = ∅

undefined otherwise

for V,W ∈ W . For any world W , let W# be the family of worlds which
are disjoint from W . Following [4,5], this leads to a tensor ∗ on SetW . For
A,B ∈ SetW this is given by

(A ∗B)W ={〈U, V, a, b〉 |a ∈ AU, b ∈ BV,U ∗ V = W}

at W ∈ W . The corresponding exponent has

(A−−∗B)V =
∏

W∈V #

(A(W) =⇒ B(V ∗W))

at any world V ∈ W, where =⇒ is the set-theoretic function space. This
gives rise to the sharing interpretation of the multiplicatives: multiplicative
pairs come from disjoint worlds; multiplicative functions take arguments from
worlds disjoint from the one that the function uses.

Interesting examples using the separation properties of multiplicatives are
produced in [14] through the use of a type of stores. In order to do this we
let L : W −→ Set be the inclusion functor, so that LW = W is thought
of as a set of locations. Let N : W −→ Set be the constant functor to
the natural numbers. Define a functor S = L −→ (1 ∨ (N ∧ L)) using the
evident pointwise operations. For some singleton {a} and any W ∈ W , we
have SW = W =⇒ ({a} + (N ×W)) . Then we may regard s ∈ SW as a

9

Collinson and Pym

representation of the portion of store at world W : the element a represents the
null pointer and every other location contains both an integer and a location.

We now introduce some additional notation. Suppose W ′ is any sub-family
of W and t is a family of functors with t(U) ∈ SetW for each U ∈ W ′. Let∏

U∈W ′ be the pointwise lifting of the product. That is,

(
∏

U∈W ′

t(U))V =
∏

U∈W ′

t(U)V

for any V ∈ W ′. Write πU for both the U -th projection of
∏

U∈W ′ and its
pointwise lifting.

3.2 Locations, Regions, and Realms

Recall that a location is an indivisible part of memory — for this section,
we do not store values — and that a region is a — for this section, finite —
subset of the set of locations. In this particular model, a region is the same
as a world. This will not always be the case, and it is useful to distinguish
regions and worlds as they play different roles.

For any function R : FRV (B) −→W , let

R[Bi] =
⋃
{R(ρ) | ρ ∈ FRV (B)} ⊆ Loc

for any Bi that is a sub-bunch of B. A (region) environment for the realm B
is a function R : FRV (B) −→ W such that, if (B1, B2) is a sub-bunch of B,
then R[B1]∩R[B2] = ∅. Notice that if, for example, (B1;B2) is a sub-bunch of
B, then R[B1]∩R[B2] need not necessarily be empty. Let LocR = R[B] for any
region environment R for B. Let REnv(B) be the set of region environments
of B.

We now construct a category, Realms , with objects consisting of realms.
Let A and B be realms, and let FRV (B) = {ρ′1, . . . , ρ′n}. A substitution
(−)[ρ1/ρ

′
1, . . . , ρn/ρ

′
n] of variables from A for variables from B consists of

ρ1, . . . , ρn (not necessarily distinct) drawn from A such that: if Bi, Bj is a
sub-bunch of B, ρ′i is in Bi and ρ′j is in Bj then there is a sub-bunch Ai, Aj

of A with ρi in Ai and ρj in Aj. Note the special case if n = 0. An arrow in
Realms from A to B is precisely a substitution of variables from A for vari-
ables from B. The verification that this is a category is routine. Furthermore,
this category has finite products and an additional monoidal structure. This
monoid is in fact a pseudoproduct, as described in [3].

Let s : A −→ B be a substitution. For any R ∈ REnv(A), we may
define the function Rs : FRV (B) −→ W . If s = (−)[ρ1/ρ

′
1, . . . , ρn/ρ

′
n] take

Rs(ρ′i) = R(ρi), for 1 ≤ i ≤ n. This gives a function

(−)s : REnv(A) −→ REnv(B)

between region environments for different realms.

10

Collinson and Pym

We may extend any region environment R for B so that for some fresh
region variable ρ /∈ FRV (B) we have

RU : FRV (B) ∪ {ρ} −→ W

given by

RU(ρi) =

R(ρi) if ρi ∈ FRV (B)

U if ρi = ρ

for any chosen region U . Let R be a region environment for B. Then RU is
an environment for B; ρ. If LocR ∩U = ∅, then RU is also an environment for
B, ρ.

3.3 The Indexed Category

A semantic type over a realm B is just a function τ : REnv(B) −→ SetW .
That is, it is a family of functors, indexed by region environments. A mor-
phism f : τ −→ τ ′ between semantic types is a family of arrows (natural
transformations)

(fR : τR −→ τ ′R)R∈REnv(B)

indexed by region environments for B. That is, it is a family of functions
indexed by region environments and worlds. Lifting composition and identity
pointwise from SetW gives a category P (B) of semantic types over B. For
each realm B, the category P (B) is a CDCC, with the operations given by
pointwise lifting from SetW .

Given a substitution s : A −→ B, define a functor P (s) = s∗ : P (B) −→
P (A) as follows. Let τ be a semantic type over B. Then

s∗(τ)(R) = τ(Rs)

where R ∈ REnv(A). Given f : τ −→ τ ′ over B we have s∗(f) : s∗(τ) −→
s∗(τ ′) given by a family of natural transformations

s∗(f)R = fRs : τ(Rs) −→ τ ′(Rs)

where R ∈ REnv(A).

The assignments for s∗ make it a functor that preserves CDCC structure
on-the-nose. The proofs of these facts are simple verifications from the defini-
tions. In particular, the second follows from the pointwise nature of the defini-
tion. Further calculation shows that P gives a functor P : Realms −→ CDCC
to the category of CDCCs and strict CDCC functors.

There are substitutions for projections π : B;α −→ B and ψ : B,α −→ B
given by putting αi for any αi in B. The functor π∗ : P (B) −→ P (B;α) maps
an object τ ∈ P (B) to the family π∗(τ)(R) = τ(R�FRV (B)) indexed by R ∈
REnv(B;α). An arrow f : τ −→ τ ′ of P (B) is mapped to π∗(f) : π∗(τ) −→

11

Collinson and Pym

π∗(τ ′) in P (B;α) given by the family π∗(f)R = f�FRV (B) : τ(R�FRV (B)) −→
τ ′(R�FRV (B)) indexed by R ∈ REnv(B;α). The description of the functor
ψ∗ : P (B) −→ P (B,α) is identical to the description of π∗, except that the
families are now indexed by R ∈ REnv(B,α).

3.4 Functors for Universal Quantifiers

Define a functor Π : P (B; ρ) −→ P (B) for the additive quantifier as follows.
Send an object τ to Π(τ) with

Π(τ)(R) =
∏

U∈W

τ(RU) (1)

where R is an environment for B. Given f : τ −→ τ ′, assign Π(f)R :
Π(τ)(R) −→ Π(τ ′)(R) indexed by R ∈ REnv(B), with component projec-
tion

Π(f)R,U = fRU ◦ πU :
∏

U∈W

τ(RU) −→ τ ′(RU)

at each U ∈ W .

For the multiplicative quantifier we use the functor Ψ : P (B, ρ) −→ P (B).
This sends an object τ to Ψ(τ) with

Ψ(τ)(R) =
∏

U∈LocR#

τ(RU) (2)

where R is an environment for B. The action of Ψ on arrows is by a similar
restriction of the indexing to regions disjoint from LocR.

Theorem 3.1 There are adjunctions π∗ a Π and ψ∗ a Ψ.

The proof of the theorem is by unwinding the definitions of arrows in P (B),
P (B; ρ) and P (B, ρ). For the additive, this shows that the family underlying
an arrow π∗(τ) −→ τ ′ boils down to the same thing as the family underlying
an arrow τ −→ Π(τ ′). A similar proof gives the multiplicative case.

The Beck-Chevalley condition is a standard property required of indexed
categorical models of ordinary (additive) quantifiers. It must be checked ex-
plicitly since the existence of the functors needed to model quantifiers does not
necessarily guaranteee that it holds. From a logical point of view, the Beck-
Chevalley condition says that quantification commutes with substitution: if
we substitute after quantifying over ρ, it is the same as quantifying over ρ and
then substituting. More information about the Beck-Chevalley condition can
be found in [11].

Proposition 3.2 The Beck-Chevalley condition for Π holds. That is, for any
s : A −→ B, we have that

Π ◦ P (s× 1) = P (s) ◦ Π

12

Collinson and Pym

holds. A weak version of the Beck-Chevalley condition holds for Ψ. For any
s : A −→ B, there is a bunch B′ and an arrow s′ : A −→ B′ such that

w ◦ s′ = s Ψ ◦ P (s′ ⊗ 1) = P (s′) ◦Ψ

both hold, where w : B′ −→ B is weakening.

The full Beck-Chevalley condition does not hold for multiplicative quan-
tification because of the disjointness condition on the indexing defining the
action of the functor Π. Intuitively, if we add a new type variable ρ′ by weak-
ening before quantifying over ρ then ρ′ must be disjoint from ρ. This is not
necessarily the case if we quantify over ρ and then weaken in ρ′. The weak
Beck-Chevalley condition makes appropriate modifications to deal with these
separation issues.

3.5 Summary of the Model Structure

The fact that we have a model of the calculus follows immediately from the
categorical results above. Some comments on this are in order.

Polymorphic types are interpreted using

JB ` ∀ρ.τK(R) =
∏

U∈W τ(RU)

JB ` ∀∗ρ.τK(R) =
∏

U∈LocR# τ(R
U)

(3)

where R ∈ REnv(B), τ = JB; ρ ` τK and τ = JB, ρ ` τK. The interpretation
of the additive quantifier is such that the quantified variable ranges over all
regions. By contrast, for the multiplicative it ranges only over all fresh regions,
that is, those that are disjoint from all others used in the interpretation of the
type. This hints at a connection between polymorphism and (region) alloca-
tion and disposal — something that has been suggested by several authors in
the past. Teasing out the precise nature of this connection requires making
some refinements to the model and careful, but relatively minor, changes to
the calculus. This in done in Section 4.

Terms are interpreted using the hyperdoctrine structure of P ; see [3]. The
CDCC structure of a fibre P (B) is reflected as the fixing of the realm in the
first-order rules of Section 2.

In this language the region variables enter the language through the types
ρ ref. At this stage we do not develop examples directly using these types.
However, in order to be definite interpret

JB ` ρ refKRW =

 {l} if {l} = W ⊆ R(ρ)

∅ otherwise

13

Collinson and Pym

for any region environment R and world W . A similar choice is made and
explained in Section 4.

We obtain, with the interpretation of terms M given in [3], the following
soundness property:

Theorem 3.3 If B | Γ ` M : τ is provable, then there is an arrow JMK :
JB ` ΓK −→ JB ` τK in the fibre over B.

An alternative model exists in which worlds depend on realms. Let R be
a region environment. A world, W , is environmentally friendly if W ⊆ LocR.
Semantic types are defined as before, except that now, after being given a
region environment, they accept only environmentally friendly worlds. This
model provides functors to model both of the universal quantifiers. The mul-
tiplicative turns out to be simpler than the additive. The additive no longer
satisfies the Beck-Chevalley condition, so is not quite ordinary polymorphism.
For this reason, we prefer not to insist that worlds are environmentally friendly.
In the BRDM, and in Section 4, compatibility constraints between worlds and
realms are in the interpretation of references rather than the structure.

3.6 States for the BDM with Regions

We could simply take the BDM states to give a notion of state that is constant
at each realm. However, we can refine the notion of state in order to take full
advantage of region structure.

If B = B1;B2 or B = B1, B2 then write Ri = R�Bi
= R�FRV (Bi)

and
Wi = W ∩ LocRi

, for W ∈ W and i = 1, 2. From any function s with domain
W , we define si = s�Wi

to be the restriction to Wi.

Let R : FRV (B) −→ W be a region environment for a realm B. Define
the states functor at R, SR : W −→ Set , recursively on the structure of the
underlying realm B:

• if B = ∅ then SRW = {⊥ : ∅ =⇒ {a}}
• if B = ρ then SRW = (W ∩R(ρ)) =⇒ {a}+ (N × (W ∩R(ρ))

• if B = B1;B2 or B1, B2 then s ∈ SRW iff si ∈ SRi
Wi for both i = 1, 2,

where {a} is any fixed one-element set. The set SRW is always contained in
the function space (W ∩ LocR) =⇒ {a}+ (N × (W ∩ LocR)).

The clause for ρ enforces the condition that any linked system of locations
that intersects R(ρ) must be entirely contained within R(ρ). Notice that the
condition si : Wi −→ {a} + (N ×Wi) is guaranteed in the final of the three
defining clauses, so that the store si is contained entirely within the region
Wi. It is important to understand the difference between the final two parts of
that third clause. In the case B = B1;B2, the worlds W1 and W2 may overlap;
therefore a location in Wi may point to a location in Wj for i 6= j. In the case
B = B1, B2, the worlds W1 and W2 do not overlap, so no pointer in Wi may
see a location in Wj. A procedure with a state parameter s that is typed over

14

Collinson and Pym

a realm B1, B2 could be guaranteed to produce an output entirely contained
in R[B1] and so does not intersect R[B2]. If the argument over B2 is not used
again, then we may dispose of R[B2]. An example of this kind is given in [24],
involving two lists, stored in separate regions, that are concatenated into one
of those regions.

3.7 The BDM with Singleton Regions

The region model specializes easily to a location model: a model for a calculus
with location variables rather than region variables.

Location variables are intended to range over locations rather than regions.
The language is just as before; only the interpretation changes. A reference
x : ρ ref is intended to live at the location specified by ρ. This kind of type
features extensively in some of the more highly-developed calculi for memory
management — see for example [13,28].

We continue to use FRV (−), even though we now have location rather than
region variables. We modify the notion of region environment to a location
environment, which is a map R : FRV (B) −→ Loc so that each location
variable is associated to a unique location in an environment. In a location
evnironment R with R(ρ) = l, a reference x : ρ ref lies at location l.

Note that when two location variables are combined multiplicatively they
must be mapped to distinct locations by location environments. Semantic
types, the base category and the functors induced by substitutions are con-
structed using the methods above.

An environment R for B may be extended with a location l to an envi-
ronment Rl for B; ρ by taking Rl(ρi) = R(ρi) if ρi ∈ FRV (B) and Rl(ρi) = l
otherwise. This is also an environment for B, ρ when l /∈ LocR.

The functors Π : P (B ; ρ) −→ P (B) and Ψ : P (B, ρ) −→ P (B) used to
interpret the quantifiers act on suitable objects τ as

Π(τ)(R) =
∏

l∈Loc

τ(Rl) Ψ(τ)(R) =
∏

l /∈LocR

τ(Rl)

where R is any location environment for B. That is

JB ` ∀ρ.τK(R) =
∏

l∈Loc τ(R
l)

JB ` ∀∗ρ.τK(R) =
∏

l /∈LocR
τ(Rl)

(4)

where R ∈ REnv(B), τ = JB; ρ ` τK and τ = JB, ρ ` τK. The additive is just
ordinary quantification over individuals, whereas the multiplicative is a kind
of fresh quantification: the quantified variable ranges over unused locations.

15

Collinson and Pym

The interpretation of reference types is modified to be:

JB ` ρ refKRW =

W if W = {R(ρ)}

∅ otherwise

for any location environment R and world W .

In the next section, we develop a language for region allocation and disposal
via multiplicative polymorphism in region variables. It should be possible to
do a similar thing for allocation of individual references using multiplicative
polymorphism in location variables, but we have not worked through all the
consequences of this approach.

4 Region Allocation and Disposal

In this section, we refine both the BRDM and the bunched region calculus to
show how it can be used to support region allocation and disposal.

We introduce a bunched polymorphic region language with references,
based on a first-order language given by Berdine and O’Hearn [2]. This is
a variant of the language for allocation, strong update and disposal of first-
order references given in given in [2]. It is founded on the first-order bunched
lambda-calculus αλ but, for technical reasons (related to the soundness of
disposal), is formulated in continuation-passing-style (CPS). Their language
has a denotational semantics on a version of the BDM, so it can be integrated
neatly into our approach.

We make no claims for the practical significance of our region language.
Our primary aim is to show that denotational models that capture some of
the most fundamental properties of region languages can be constructed using
our methods. The fundamental extension to Berdine and O’Hearn’s language
is the addition of bunched region polymorphism.

Importantly, our language requires no new proof rules or reduction rela-
tions, so changes to the metatheory from Section 2 are minimal.

4.1 The Region Language

The types, τ , are generated from storable types, σ := > | int, as follows:

τ := σ | I | τ ∧ τ | τ → τ | τ ∗ τ | τ −−∗ τ | ∀ρ.τ | ∀∗ρ.τ | a | H(B, τ) | (ρ, σ)ref

where we use a new type constant a, and type constructors H and ref.

A reference containing a value of type σ and located in region ρ will be of
type (ρ, σ)ref. An inhabitant of H(B, τ) is a continuation that takes heaps and
the regions in B to produce values of type τ . Thus the realm B in H(B, τ) has
similarities to the syntactic entitites known as effects in the typing judgements
of the Tofte-Talpin system. The type a is used in types of continuations

16

Collinson and Pym

0 : int

succ : int → int

!σ,B,ρ : ((ρ, σ)ref ∗ >) → (σ → H(B(ρ), a)) → H(B(ρ), a)

:=σ,B,ρ : ((ρ, σ)ref ∗ >) → σ → H(B(ρ), a) → H(B(ρ), a)

:≡σ,σ′,B,ρ : (ρ, σ)ref→σ′→((ρ, σ′)ref −−∗ H(B(ρ), a))−−∗ H(B(ρ), a)

newB,ρ : ((ρ,>)ref −−∗ H(B(ρ), a)) → H(B(ρ), a)

freeσ,B,ρ : (ρ, σ)ref → H(B(ρ), a)−−∗ H(B(ρ), a)

newregionB : (∀∗ρ.H((B, ρ), a)) → H(B, a)

freeregionB : ∀∗ρ.H(B, a) → H((B, ρ), a)

Fig. 2. Region Allocation and Reference Constants

H(B, a) to describe alterations to the heap through allocation, deallocation
and strong update of references. A fundamental idea in [2] is that additive
types H(B, a) → H(B, a) describe commands that do not alter the heap. In
contrast, commands H(B, a)−−∗H(B, a) can make such changes. This tracks a
similar idea for logical connectives in separation logic.

As before, the well-formed types B ` τ are just those with FRV (τ) ⊆
FRV (B). The contexts over a realm B are generated as before, subject to
these new types.

The well-formed terms are generated using the rules from Section 2 to-
gether with families of constants as shown in Figure 2. The subscripts on the
constants indicate the indexing families. These will usually be omitted. The
newregion and freeregion constants are well-typed over any realm containing
B. The new, free, !, := and :≡ constants are well-typed over the realm B and
context ∅∗.

The zero and successor constants have their usual meanings. There are
constants new and free for allocation and deallocation of individual references.

17

Collinson and Pym

The constant ! is dereferencing, whilst := is type-preserving (weak) update of
references. We also have :≡ for type-changing (strong) update of references.
Lastly, we have constants newregion and freeregion that allocate and dispose
of entire regions.

The way to get a handle on these constants is to look at associated derived
rules for manipulation of references. For example, supposing we are given
appropriate terms N and K with

B | Γ ` N : σ′ B | ∆ ` K : (ρ, σ′)ref −−∗ H(B, a)

and the abbreviations

τ1 :=(ρ, σ)ref→σ′→((ρ, σ′)ref −−∗ H(B(ρ), a))−−∗ H(B(ρ), a)

τ2 := σ′→((ρ, σ′)ref −−∗ H(B(ρ), a))−−∗ H(B(ρ), a)

τ3 := ((ρ, σ′)ref −−∗ H(B(ρ), a))−−∗ H(B(ρ), a)

for types. Then, given a reference B | Γ ` M : (ρ, σ)ref, we have a derivation
as follows:

B | Γ ` :≡ : τ1 B | Γ `M : (ρ, σ)ref

B | Γ ` app(:≡,M) : τ2

...

N

B | Γ ` app(app(:≡,M), N) : τ3

...

K

B | Γ,∆ ` app∗(app((app(:≡,M), N), K) : H(B, a)

and we normally abbreviate the root term as

M :≡ N ;K

in order to have the program written in sequence. Notice that the terms
M :≡ N and K are combined multiplicatively, so (according to the sharing
interpretation) use disjoint store. For this reason, the reference M : (ρ, σ)ref
may not be used in K. It is replaced by the reference of type (ρ, σ′)ref which
K expects. The meanings of the other constants may be revealed in the same
way. They have been omitted for reasons of space and should not be too hard
to reconstruct. See also [2] for similar derivations.

Turning to the constants for region allocation and disposal there are de-
rived rules

B | Γ `M : ∀∗ρ.H((B′, ρ), a)

B | Γ ` newregion ;M : H(B′, a)

B | Γ `M : H(B′, a)

B, ρ | Γ ` freeregion ρ ;M : H((B′, ρ), a)

for allocation and disposal of regions. Furthermore, we have a derived rule

B, ρ | Γ `M : H((B′, ρ), a)

B | Γ ` newregion ; Λ∗ρ.M : H(B′, a)
(ρ /∈ FRV (Γ))

18

Collinson and Pym

provided the side-condition is met.

These rules exhibit the close connection between quantification and alloca-
tion and between instantiation and disposal. We could have used such proof
rules directly to define region allocation and disposal. However, the proof
rules for the multiplicative quantifier and their interpretations are sufficient
to enable us to write these commands as constants. Since no special proof
rules are needed, the new region calculus is just a straightforward, applied
variant of the bunched polymorphic calculus. Changes to the metatheory are
minimal. It remains to show that the new constants can all be interpreted in
a suitable model.

For newregion, the intention is that the new region will be given the name
ρ and that this will be associated with a set of locations that is disjoint from
those used for any prior part of M . The operation freeregion can be used
whenever the region to be disposed is unused by the rest of the computation.
Recall that for this kind of CPS expression there is a Hoare-like relationship
where the context of the conclusion is the pre-condition and the context of
the premise is the post-condition for the term in the conclusion. The realms
in these derived rules are then seen to verify that our intentions for newregion
and freeregion are met.

As an example of a continuation we have

newregion; Λ∗ρ
′.new;λ∗y : (ρ′,>)ref.y :≡ 42;λ∗z : (ρ′, int)ref.

newregion; Λ∗ρ.new;λ∗x : (ρ, int)ref.!z;λw : int.x := w;

freeregion ρ′;x := 36; freeregion ρ;K : H(B, a) .

The uses of ‘;’ in the term are abbreviations for applications of constants
that are better read as concatenations of continuations. This (rather trivial)
program opens a region ρ′, creates a new reference y in ρ′, updates (strongly)
the value in y to 42, opens another region ρ, creates a new integer reference x
in ρ, updates x with the value held in y, frees ρ′ (including y), updates x with
the value 36, frees region ρ (including x) and continues with K. This example
illustrates the fact that it is possible to open first one region then another,
dispose the first and then the second. The safety of this is guaranteed by the
typing. The reader can doubtless see that the derivation of such a term is
rather cumbersome. In fact, in order to type this term we need to add further
constants that encapsulate the equality JB ` τ1 ∗ (σ∧τ2)K = JB ` (τ1∧σ)∗τ2K
that holds in the model (see also the constant hoist of [2]). We conjecture that
it should be possible (with a fair bit of work) to write longer programs that
make more interesting use of regions.

4.2 A Model for the Region Language

We combine the BRDM with the denotational model from [2] to give a model
of the present language.

19

Collinson and Pym

Since arbitrarily many references may be allocated using any one region
variable we are forced to use a model in which all regions are assumed to be
infinite. Let InfReg be the set of all countable subsets of Loc with count-
able complement. The complement must be countable in order to support
allocation of regions.

Redefine a region environment R for a realm B to be a function R :
FRV (B) −→ InfReg such that LocR has a countable complement and if ρ
and ρ′ are separated by a ‘,’ in B then R(ρ) ∩ R(ρ′) = ∅. Here, let LocR be
the set of infinite regions U such that LocR ∪ U has countable complement.

A (typed) world is a finite partial function from locations to storable types.
That is, it is a finite set of locations together with a store typing. For worlds v
and w write v ∩w = ∅ when the domains of the two functions do not overlap.
When this is the case write v ∪ w for the partial function whose graph is the
union of the graphs of v and w. Worlds constitute a partial commutative

monoid Wld = (Loc
fin
⇀ σ, ∅, ∗) where

(v ∗ w) =

 v ∪ w if v ∩ w = ∅

undefined otherwise

and ∅ is the partial function with empty domain. In what follows, we also
regard Wld as a discrete category. This induces a CDCC structure on SetWld ,
similar to that of the BDM, and following Day’s method [4,5].

A semantic type over a realm B, is a family τ of functors τR : Wld −→ Set
indexed by R ∈ REnv(B). An arrow between semantic types is a family of
natural transformations fR : τR −→ τ ′R indexed by R ∈ REnv(B). This gives
a category P (B) which is a CDCC, since SetWld is a CDCC. Furthermore,
it extends to an indexed category over the category of realms, following the
BRDM construction almost exactly. In particular, we recover the functors Π
and Ψ used to interpret the additive and multiplicative universal quantifiers.
However, note that the index U in (1) and (2) is now drawn from LocR rather
than W .

A storable value is an integer (of type int) or the unit (of type >). That
is, they are values of some storable type. A heap is a finite partial function
from locations to storeable values. Let JintK be the set of integers and J>K be
the one-element set >.

Define

H(R,w) =
∏

l∈dom(w)∩LocR

Jw(l)K

to be the set of heaps compatible with w and R for the realm B. Note the
compatibility constraint relating worlds to regions.

Interpret a type B ` τ as a function from region environments for B to
objects of SetWld . The interpretation is specified in Figure 3, where {e} is a
given singleton set, 2 = {0, 1} is a given two-element set, =⇒ is the function

20

Collinson and Pym

JB ` intKRw = Z JB ` >KRw = {>} JB ` aKRw = 2

JB ` IKRw =

 {e} if W = ∅

∅ otherwise

JB ` (ρ, σ)refKRw =

 {l} if w = [l : σ] and l ∈ R(ρ)

∅ otherwise

JB ` − �−K for � = ∧,→, ∗,−−∗ using the CDCC P(B)

JB ` H(B′, τ)KRw = (H(R′, w) =⇒ JB′ ` τKR′w)

JB ` ∀ρ.τK = Π(JB; ρ ` τK) JB ` ∀∗ρ.τK = Ψ(JB, ρ ` τK)

Fig. 3. Interpretation of CPS language

space, R′ = R�B′ and the cases using Π and Ψ expand as in (3) but with U
drawn from the set LocR rather than W .

The motivations for our intepretations are very similar to those explained
in [2]. In particular, interpretations of int, >, I, ∧, →, ∗ and −−∗ are just the
same. Notice how a continuation of type H(B, τ) is interpreted as a function
that takes heaps on the store (restricted to B) to values of type τ . In particu-
lar, continuations in H(B, a) interrogate the heap (on B) to provide Boolean
answers. A fundamental idea in [2] is to try to get a type system that lies in
a propositions-as-types correspondence with a variant of separation logic [20].
This, together with the regions, drives the interpretation of (ρ, σ)ref. Roughly
speaking, we have x : (ρ, σ)ref corresponding to x 7→ v, where v : σ at location
l in the heap on the singleton {l} (and also l is in the region ρ).

The interpretation of terms other than the reference constants and region
operators follows the pattern of interpretation from the BRDM. The interpre-
tation of reference constants are modifications of the interpretations given in
[2]. In particular, the interpretation of new requires that the interpretations
of region variables are infinite. In practice, finite regions would be sufficient:
their size would be bounded above by the number of individual references
allocated within them.

21

Collinson and Pym

Consider the interpretation of newregionB. Now, for any suitable R and w,

JB ` ∀∗ρ.H((B, ρ), a)KRw

= ΨJB, ρ ` H((B, ρ), a)KRw

=
∏

U∈LocR#∩LocR
(JB, ρ ` H((B, ρ), a)KRUw)

=
∏

U∈locR#∩LocR
(H(RU , w) =⇒ 2)

holds. Selecting any region U ∈ LocR# ∩ LocR we have a projection func-
tion πU : JB ` ∀∗ρ.H((B, ρ), a)KRw −→ (H(RU , w) =⇒ 2). There are
functions FR,U,w : (H(RU , w) =⇒ 2) −→ (H(R,w) =⇒ 2) such that for
k : H(RU , w) −→ 2 and h ∈ H(R,w), we have FR,U,w(k)(h) = k(h′), where
h′(l) = h(l) if l ∈ LocR, otherwise h′(l) = 0 if w(l) = int or h′(l) = > if w(l) =
>. This gives FR,U,w ◦ πU : JB ` ∀∗ρ.H((B, ρ), a)KRw −→ JB ` H(B, a)KRw.
To get the required arrow over JBK, for each R and w select some such U and
use the functions FR,U,w ◦πU . Note that we needed that LocR has a countable
complement, but that it then follows that LocRU has countable complement
so we may use newregion again.

Now consider the interpretation of a term freeregionB. We need an arrow
JB ` ∅K −→ JB ` ∀∗ρ.H(B, a) → H((B, ρ), a)K over B. This is given using for
all R and w and U ∈ locR#∩LocR the functions GU,R,w : (H(R,w) =⇒ 2) −→
(H(RU , w) =⇒ 2) with GU,R,w(k)(h) = k(h′), where k ∈ H(R,w) =⇒ 2,
h ∈ H(RU , w) and h′ = h�LocR′ .

Notice how the semantics of newregion and freeregion extend and restrict,
respctively, the part of the heap that may be used.

Finally, we remark that, with appropriate interpretations of the remaining
constants, the soundness property (Theorem 3.3) carries over to this setting.

5 Conclusions and Comparisons

There are many possible avenues which have been left unexplored. Some
region calculi allow for region (location) constants that may be substituted
for region (location) variables: our model could be modified to support this
by altering the definition of substitution between realms. In [14], the BDM
is refined in various ways, making it possible to give semantics to languages
with more complex features, including recursion. Similar steps could be taken
with this model. At present our model only allows very simple references,
following [2]. This should be extended to treat references to other values,
such as functions and references.

An alternative way to handle allocation and deallocation of individual ref-
erences would be to type references using location rather than region variables
and to make appropriate changes to the constants and the model.

The relationship between the languages we have presented and previous

22

Collinson and Pym

region and location languages remains to be clarified. Our reference language
is in CPS and only puts references in regions. In contrast, the language in [25]
is in direct style but has effect labellings on types and puts almost all values
in regions. It may be worthwhile to see whether other region languages, such
as the linearly typed languages described in [6,13,27,28,29] and the type-and-
effect systems described in [9,12,25], can be given a denotational semantics by
translating them into ours. This would also give a measure of the expressive-
ness of our language relative to others.

In most region (and location) systems, the regions obey a stack discipline.
In contrast, our system does not require this: we may interleave allocations
and disposals at will and the disjointness conditions implicit in the types will
give a static guarantee of soundness. In some situations this could allow for a
more efficient recycling of memory. A number of other authors have been led
to consider typed region calculi of this kind, for example [6,9].

Bunched existential quantifiers are given in [3] and could be exploited in
region models. An extreme form of the multiplicative existential, that hides
all of the regions used to form the representation type, has some similarities to
the region function closures of [25] and could also be used to describe abstract
data-types with encapsulated state.

It may not be unreasonable to expect some relationship between the mul-
tiplicative quantifier in (4) and the freshness quantifiers of [7].

We remind the reader that bunched polymorphism and first-order bunching
are independent. Both happen to be supported by the BRDM, but the use
of bunched polymorphism together with the category of realms should be
regarded as a general technique for building models of languages with region
and location parameters.

References

[1] A. Banerjee, N. Heintze, and J.G. Riecke. Region analysis and the polymorphic
lambda calculus. In LICS ’99, pages 88–97. IEEE Press, 1999.

[2] J. Berdine and P. O’Hearn. Strong update, disposal and encapsulation in
bunched typing. In Mathematical Foundations of Programming Semantics,
MFPS22, Electronic Notes in Theoretical Computer Science. Elsevier, 2006.
This volume.

[3] M. Collinson, D. Pym, and E. Robinson. On Bunched Polymorphism (Extended
Abstract). In Computer Science Logic, volume 3634 of LNCS. Springer, 2005.

[4] B.J. Day. On closed categories of functors. In Proceedings of the Midwest
Category Seminar, volume 137 of LNM. Springer, 1970.

[5] B.J. Day. An embedding theorem for closed categories. In Proceedings of the
Sydney Category Seminar 1972/73, volume 420 of LNM. Springer, 1973.

23

Collinson and Pym

[6] M. Fluet, G. Morrisett, and A. Ahmed. Linear regions are all you need. In
Programming Languages and Systems, ESOP 2006, volume 3924 of LNCS.
Springer, 2006.

[7] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

[8] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse et son
application à l’élimination des coupres dans l’analyse et la théorie des types.
In J.E. Fenstad, editor, Proceedings of the 2nd Scandinavian Logic Symposium,
pages 63–92. North-Holland, Amsterdam, 1971.

[9] F. Henglein, H. Makholm, and H. Niss. A direct approach to control-flow
sensitive region-based memory-management. In Principles and Practice of
Declarative Programming, PPDP01, pages 175–186. ACM Press, 2001.

[10] F. Henglein, H. Makholm, and H. Niss. Effect types and region-based memory-
management. In Benjamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages. MIT Press, 2005.

[11] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic
and the Foundations of Mathematics. Elsevier, 1999.

[12] J.M. Lucassen and D.K. Gifford. Polymorphic effect systems. In POPL ’88,
pages 45–57. ACM Press, 1988.

[13] G. Morrisett, A. Ahmed, and M. Fluet. L3: A linear language with locations.
In TLCA’05, volume 3461 of LNCS, pages 293–307. Springer, 2005.

[14] P. O’Hearn. On bunched typing. Journal of Functional Programming, 13:747–
796, 2003.

[15] P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, 1999.

[16] F.J. Oles. A Category-Theoretic Approach to the Semantics of Programming
Languages. PhD thesis, Syracuse University, Syracuse, 1982.

[17] D. Pym, P. O’Hearn, and H. Yang. Possible worlds and resources: The semantics
of BI. Theoretical Computer Science, 315(1):257–305, 2004.

[18] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications, volume 26 of Applied Logic Series. Kluwer Academic Publishers,
2002. Errata at: http://www.cs.bath.ac.uk/ pym/BI-monograph-errata.pdf.

[19] J.C. Reynolds. The essence of algol. In J.W. de Bakker and J.C. van Vliet,
editors, Algorithmic Languages, pages 345–372. North-Holland, 1981.

[20] J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In
LICS ’02, pages 55–74. IEEE Press, 2002.

[21] D. Scott and C. Strachey. Toward a mathematical semantics for computer
languages. Technical report, Oxford University Computing Laboratory
Programming Research Group, 1971.

24

http://www.cs.bath.ac.uk/~pym/BI-monograph-errata.pdf

Collinson and Pym

[22] R.A.G. Seely. Categorical semantics for higher order polymorphic lambda
calculus. Journal of Symbolic Logic, 52:969–989, 1987.

[23] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, 1977.

[24] M. Tofte. A brief introduction to regions. In International Symposium on
Memory Management ’88, pages 186–195. ACM Press, 1998.

[25] M. Tofte and J.-P. Talpin. Implementing the call-by-value lambda-calculus
using a stack of regions. In POPL ’94, pages 188–201. ACM Press, 1994.

[26] M. Tofte and J.-P. Talpin. Region-based memory management. Information
and Computation, 2:109–176, 1997.

[27] D. Walker. Substructural type systems. In Benjamin C. Pierce, editor,
Advanced Topics in Types and Programming Languages. MIT Press, 2005.

[28] D. Walker and J.G. Morrisett. Alias types for recursive data structures. In
Types in Compilation, volume 2071 of LNCS, pages 177–206. Springer, 2001.

[29] D. Walker and K. Watkins. On regions and linear types. In ICFP ’01, pages
181–192. ACM Press, 2001.

25

	Introduction
	Bunched Region Polymorphism
	A Region Disjointness Model
	The Basic Disjointness Model
	Locations, Regions, and Realms
	The Indexed Category
	Functors for Universal Quantifiers
	Summary of the Model Structure
	States for the BDM with Regions
	The BDM with Singleton Regions

	Region Allocation and Disposal
	The Region Language
	A Model for the Region Language

	Conclusions and Comparisons
	References

