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In proof-theoretic semantics [6], model-theoretic validity is replaced by proof-theoretic va-
lidity. Validity of formulae is defined inductively from a base giving the validity of atoms using
inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the
proof rules without any requirement for formal models. Establishing this for propositional
intuitionistic logic (IPL) raises some technical and conceptual issues [2, 3, 5].

We relate the (complete) base-extension semantics of [5] to categorical proof theory and
sheaf-theoretic semantics (e.g., [1]). For the latter, propositions are interpreted as functors
from a category of bases to the lattice {{>}, ∅}. This set of functors forms the truth values
of a topos of functors from bases to Set. There are two critical aspects: the stability of
interpretation under extension of bases lands us in the world of Kripke models, and the
non-standard interpretation of disjunction is revealed to come from a Grothendieck topology.

Base-extension Semantics in Presheaves. Sandqvist [5] gives a base-extension proof-
theoretic semantics for IPL for which natural deduction is sound and complete. A base B is a
set of atomic rules (for `B) as in Definition 1, which also defines the application of base rules,
and satisfaction in a base (B). Roman p, P , etc. denote atoms and sets of atoms; Greek φ,
Γ, etc. denote formulae and sets of formulae.

Definition 1 (Sandqvist’s Semantics) Base rules R, application of base rules, and satis-
faction of formulae in a (possibly finite) countable base B of rules R are defined as follows:

[P1] [Pn]
q1 . . . qn

r
R

(Ref) P, p `B p
(AppR) if ((P1 ⇒ q1), . . . , (Pn ⇒ qn))⇒ r) and, for all i ∈ [1, n],

P, Pi `B qi, then P `B r

(At) for atomic p, B p iff `B p (∨) B φ∨ψ iff, for every atomic p and every C⊇B,
if φ C p and ψ C p, then C p

(⊃) B φ ⊃ ψ iff φ B ψ (⊥) B ⊥ iff, for all atomic p, B p
(∧) B φ ∧ ψ iff B φ and B ψ (Inf) for Θ 6= ∅, Θ B φ iff, for every C ⊇ B, if C θ

for every θ ∈ Θ, then C φ

There is a substitution (cut) operation on bases that maps derivations P `B p and p,Q `B q
to a derivation P,Q `B q.

Key to understanding our categorical formulation is the Yoneda lemma (see [1]): let C
be a locally small category, let Set be the category of sets, and F ∈ [Cop,Set] (the category
of presheaves over C); then, for each object C of C, with hC = hom(−, C), the natural
transformations Nat(hC , F ) ≡ hom(hom(−, C), F ) ∼= F (C).



We give a category-theoretic formulation of proof-theoretic validity using presheaves (i.e.,
functors F ∈ [Wop,Set]), whereW has objects pairs (B, P ) and morphisms are given by coin-
clusions of the base and derivations in the larger base. Composition is given by substitution.

Define a functor [[φ]] : Wop → Set by induction over the structure of φ as follows: the
base case [[p]](B, P ) is the set of derivations P `B p. [[p]] applied to morphisms is given by
substitution. The definition is extended to the connectives homomorphically. A key step is
the use of the Yoneda lemma to define the (hom-set) interpretation of ⊃, which is used to
define the interpretation of Sandqvist’s (elimination-style) semantics for ∨ (see also below).
Thus we establish the formal functoriality and naturality of Sandqvist’s semantics.

Theorem 2 (Soundness & Completeness) Define (cf. [5]) Γ  φ as: for all B, if B ψ
for all ψ ∈ Γ, then B φ. Then Γ ` φ (in natural deduction for IPL, cf. [5]) iff Γ  φ.

The proof of soundness uses the existence of a natural transformation corresponding to :
Γ  φ iff there exists a natural transformation from [[Γ]] to [[φ]]. The proof of completeness
uses a special base, as in [5], which is extended via [[−]] to the full consequence relation.

Sheaves and Disjunction. Standard Kripke semantics interprets both conjunction and
disjunction pointwise (i.e., on each base, in proof-theoretic semantics [3]), while it relies on
the extension ordering for implication (cf. the discussion of Goldfarb’s semantics in [3]). This
is a result of the requirement that the set of bases validating any proposition should be closed
under extension: propositions do not become untrue if we are given additional atomic infor-
mation. But there is an issue over the interpretation of disjunction. A standard constructive
view is that the proof of a disjunction should resolve to a proof of one of the disjuncts. This
is not obviously stable under extension of information and obtaining a pointwise disjunc-
tion reflecting this viewpoint is the hardest part of the proof of completeness of standard
Kripke models for IPL. We show that Sandqvist’s approach avoids this difficulty by using a
Grothendieck topology.

In this section, we ignore differences between derivations, and interpret propositions as
truth values in the topos S = [Wop,Set]. These can be identified with subfunctors of
the constant singleton functor {>} (cf. [1]). Atomic propositions are interpreted in S via
[[p]](B, P ) = {> | P `B p} = {> | P B p}. Sandqvist’s satisfaction conditions for conjunc-
tion and implication correspond to the internal interpretation of the logic in the topos S, but
his conditions for disjunction and false do not.

For each atomic proposition p, we form an internal operator on truth values: jp(ω) =
(ω ⊃ [[p]]) ⊃ [[p]]. The set of atomic propositions internalizes as the constant functor: At(B) =
{p | p is atomic}. Consider the function on truth values that is the internal interpretation of
j(ω) = ∀p ∈ At. jp(ω) = ∀p ∈ At. (ω ⊃ [[p]]) ⊃ [[p]]. This is a Lawvere-Tierney topology —
that is, the internalization of a Grothendieck topology — and each [[p]] is j-closed.

Sandqvist’s satisfaction conditions correspond exactly to the standard interpretation of
connectives in the topos of sheaves for this topology.

Proposition 3 For any proposition φ, and any world W = (B, P ), P B φ iff [[φ]](B, P ) =
{>}, where [[φ]] is the standard interpretation of φ in Shj(S).

This follows from the closure of sheaves under conjunction and implication, intuitionistic
equivalence of ((φ ∨ ψ) ⊃ p) ⊃ p and ((φ ⊃ p) ∧ (ψ ⊃ p)) ⊃ p, and expansion of definitions.
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This sheaf model can be seen as a continuation semantics in which a complete proof-search
[4] is the proof of an atomic proposition. Using a topology for this results in a disjunction
being valid iff a point is covered by refinements on each of which one of the disjuncts holds
— cf. Beth’s semantics (see, e.g., [1]).
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