Proof-theoretic Semantics in Sheaves (Extended Abstract)

David PymEike RitterEdmund RobinsonUniversity College LondonUniversity of BirminghamQueen Mary University of London

In proof-theoretic semantics [6], model-theoretic validity is replaced by proof-theoretic validity. Validity of formulae is defined inductively from a base giving the validity of atoms using inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the proof rules without any requirement for formal models. Establishing this for propositional intuitionistic logic (IPL) raises some technical and conceptual issues [2, 3, 5].

We relate the (complete) base-extension semantics of [5] to categorical proof theory and sheaf-theoretic semantics (e.g., [1]). For the latter, propositions are interpreted as functors from a category of bases to the lattice $\{\{\top\}, \emptyset\}$. This set of functors forms the truth values of a topos of functors from bases to **Set**. There are two critical aspects: the stability of interpretation under extension of bases lands us in the world of Kripke models, and the non-standard interpretation of disjunction is revealed to come from a Grothendieck topology.

Base-extension Semantics in Presheaves. Sandqvist [5] gives a base-extension prooftheoretic semantics for IPL for which natural deduction is sound and complete. A base \mathcal{B} is a set of atomic rules (for $\vdash_{\mathcal{B}}$) as in Definition 1, which also defines the application of base rules, and satisfaction in a base ($\Vdash_{\mathcal{B}}$). Roman p, P, etc. denote atoms and sets of atoms; Greek ϕ , Γ , etc. denote formulae and sets of formulae.

Definition 1 (Sandqvist's Semantics) Base rules \mathcal{R} , application of base rules, and satisfaction of formulae in a (possibly finite) countable base \mathcal{B} of rules \mathcal{R} are defined as follows:

$[P_1]$	$[P_n]$	(/	$P, p \vdash_{\mathcal{B}}$	A
q_1	$\dots q_n $	$(\operatorname{App}_{\mathcal{R}})$	if $((P_1 =$	$\Rightarrow q_1), \dots, (P_n \Rightarrow q_n)) \Rightarrow r)$ and, for all $i \in [1, n]$,
	$r \kappa$		$P, P_i \vdash_{\mathcal{B}}$	$g q_i$, then $P \vdash_{\mathcal{B}} r$
(At)	for atomic $p, \Vdash_{\mathcal{B}}$	$p \text{ iff } \vdash_{\mathcal{B}} p$	(\vee)	$\Vdash_{\mathcal{B}} \phi \lor \psi \text{ iff, for every atomic } p \text{ and every } \mathcal{C} \supseteq \mathcal{B},$ if $\phi \Vdash_{\mathcal{C}} p$ and $\psi \Vdash_{\mathcal{C}} p$, then $\Vdash_{\mathcal{C}} p$
(\supset)	$\Vdash_{\mathcal{B}} \phi \supset \psi \text{ iff } \phi \Vdash_{\mathcal{D}} \phi$	$_{\mathcal{B}}\psi$	(\perp)	$\Vdash_{\mathcal{B}} \perp$ iff, for all atomic p , $\Vdash_{\mathcal{B}} p$
(\wedge)	$\Vdash_{\mathcal{B}} \phi \land \psi \text{ iff } \Vdash_{\mathcal{B}} \phi$	ϕ and $\Vdash_{\mathcal{B}} \psi$	(Inf)	for $\Theta \neq \emptyset$, $\Theta \Vdash_{\mathcal{B}} \phi$ iff, for every $\mathcal{C} \supseteq \mathcal{B}$, if $\Vdash_{\mathcal{C}} \theta$ for every $\theta \in \Theta$, then $\Vdash_{\mathcal{C}} \phi$

There is a substitution (cut) operation on bases that maps derivations $P \vdash_{\mathcal{B}} p$ and $p, Q \vdash_{\mathcal{B}} q$ to a derivation $P, Q \vdash_{\mathcal{B}} q$.

Key to understanding our categorical formulation is the Yoneda lemma (see [1]): let \mathcal{C} be a locally small category, let **Set** be the category of sets, and $F \in [\mathcal{C}^{op}, \mathbf{Set}]$ (the category of presheaves over \mathcal{C}); then, for each object C of \mathcal{C} , with $h^C = \hom(-, C)$, the natural transformations $\operatorname{Nat}(h^C, F) \equiv \hom(\hom(-, C), F) \cong F(C)$.

We give a category-theoretic formulation of proof-theoretic validity using presheaves (i.e., functors $F \in [\mathcal{W}^{op}, \mathbf{Set}]$), where \mathcal{W} has objects pairs (\mathcal{B}, P) and morphisms are given by coinclusions of the base and derivations in the larger base. Composition is given by substitution.

Define a functor $\llbracket \phi \rrbracket : \mathcal{W}^{op} \to \mathbf{Set}$ by induction over the structure of ϕ as follows: the base case $\llbracket p \rrbracket (\mathcal{B}, P)$ is the set of derivations $P \vdash_{\mathcal{B}} p$. $\llbracket p \rrbracket$ applied to morphisms is given by substitution. The definition is extended to the connectives homomorphically. A key step is the use of the Yoneda lemma to define the (hom-set) interpretation of \supset , which is used to define the interpretation of Sandqvist's (elimination-style) semantics for \lor (see also below). Thus we establish the formal functoriality and naturality of Sandqvist's semantics.

Theorem 2 (Soundness & Completeness) Define $(cf. [5]) \Gamma \Vdash \phi$ as: for all \mathcal{B} , if $\Vdash_{\mathcal{B}} \psi$ for all $\psi \in \Gamma$, then $\Vdash_{\mathcal{B}} \phi$. Then $\Gamma \vdash \phi$ (in natural deduction for IPL, cf. [5]) iff $\Gamma \Vdash \phi$.

The proof of soundness uses the existence of a natural transformation corresponding to \Vdash : $\Gamma \Vdash \phi$ iff there exists a natural transformation from $\llbracket \Gamma \rrbracket$ to $\llbracket \phi \rrbracket$. The proof of completeness uses a special base, as in [5], which is extended via $\llbracket - \rrbracket$ to the full consequence relation.

Sheaves and Disjunction. Standard Kripke semantics interprets both conjunction and disjunction pointwise (i.e., on each base, in proof-theoretic semantics [3]), while it relies on the extension ordering for implication (cf. the discussion of Goldfarb's semantics in [3]). This is a result of the requirement that the set of bases validating any proposition should be closed under extension: propositions do not become untrue if we are given additional atomic information. But there is an issue over the interpretation of disjunction. A standard constructive view is that the proof of a disjunction should resolve to a proof of one of the disjuncts. This is not obviously stable under extension of information and obtaining a pointwise disjunction reflecting this viewpoint is the hardest part of the proof of completeness of standard Kripke models for IPL. We show that Sandqvist's approach avoids this difficulty by using a Grothendieck topology.

In this section, we ignore differences between derivations, and interpret propositions as truth values in the topos $\mathcal{S} = [\mathcal{W}^{op}, \mathbf{Set}]$. These can be identified with subfunctors of the constant singleton functor $\{\top\}$ (cf. [1]). Atomic propositions are interpreted in \mathcal{S} via $[\![p]\!](\mathcal{B}, P) = \{\top \mid P \vdash_{\mathcal{B}} p\} = \{\top \mid P \Vdash_{\mathcal{B}} p\}$. Sandqvist's satisfaction conditions for conjunction and implication correspond to the internal interpretation of the logic in the topos \mathcal{S} , but his conditions for disjunction and false do not.

For each atomic proposition p, we form an internal operator on truth values: $j_p(\omega) = (\omega \supset [\![p]\!]) \supset [\![p]\!]$. The set of atomic propositions internalizes as the constant functor: $At(\mathcal{B}) = \{p \mid p \text{ is atomic}\}$. Consider the function on truth values that is the internal interpretation of $j(\omega) = \forall p \in At. \ j_p(\omega) = \forall p \in At. \ (\omega \supset [\![p]\!]) \supset [\![p]\!]$. This is a Lawvere-Tierney topology — that is, the internalization of a Grothendieck topology — and each $[\![p]\!]$ is j-closed.

Sandqvist's satisfaction conditions correspond exactly to the standard interpretation of connectives in the topos of sheaves for this topology.

Proposition 3 For any proposition ϕ , and any world $W = (\mathcal{B}, P)$, $P \Vdash_{\mathcal{B}} \phi$ iff $\llbracket \phi \rrbracket (\mathcal{B}, P) = \{\top\}$, where $\llbracket \phi \rrbracket$ is the standard interpretation of ϕ in $Sh_i(\mathcal{S})$.

This follows from the closure of sheaves under conjunction and implication, intuitionistic equivalence of $((\phi \lor \psi) \supset p) \supset p$ and $((\phi \supset p) \land (\psi \supset p)) \supset p$, and expansion of definitions.

This sheaf model can be seen as a continuation semantics in which a complete proof-search [4] is the proof of an atomic proposition. Using a topology for this results in a disjunction being valid iff a point is covered by refinements on each of which one of the disjuncts holds — cf. Beth's semantics (see, e.g., [1]).

References

- [1] J. Lambek and P. Scott. Introduction to higher-order categorical logic. Cambridge studies in advanced mathematics 7, Cambridge University Press, 1986.
- T. Piecha. Completeness in Proof-theoretic Semantics. In: Advances in Proof-theoretic Semantics, T. Piecha P. Schroeder-Heister (eds), Trends in Logic 43, 231-252, Springer 2016.
- [3] T. Piecha and P. Schroeder-Heister. Incompleteness of Intuitionistic Propositional Logic with Respect to Proof-Theoretic Semantics. *Studia Logica* 107, 233-246, 2019.
- [4] D. Pym and E. Ritter. Reductive Logic and Proof-search: Proof Theory, Semantics, and Control. OUP, 2004
- [5] T. Sandqvist. Base-extension semantics for intuitionistic sentential logic. Logic Journal of the IGPL, 23(5), 719-731, 2015.
- [6] P. Schroeder-Heister. Proof-theoretic versus Model-theoretic Consequence. In: The Logica Yearbook 2007. Prague: Filosofia 2008, 187-200.