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Abstract

The logic of bunched implications, BI, is a substructural system which freely combines an additive
(intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining oper-
ations, one which admits Weakening and Contraction and one which does not). BI may be seen to arise
from two main perspectives. On the one hand, from proof-theoretic or categorical concerns and, on the
other, from a possible-worlds semantics based on preordered (commutative) monoids. This semantics
may be motivated from a basic model of the notion of resource. We explain BI’s proof-theoretic, cate-
gorical and semantic origins. We discuss in detail the question of completeness, explaining the essential
distinction between BI with and without � (the unit of �). We give an extensive discussion of BI as a
semantically based logic of resources, giving concrete models based on Petri nets, ambients, computer
memory, logic programming, and money.

1 Introduction

The purpose of this paper is is to explore, from the point of view of resources and in the context of a
broader investigation of “resource modelling”, algebraic and possible worlds semantics for BI, the logic of
bunched implications [38, 41, 37]. Propositional BI, our focus in this paper, freely combines the ��� ����-
fragment of propositional linear logic and propositional intuitionistic logic via the formulation of contexts
not as finite sequences of propositions but rather as finite bunches of propositions. The basic formulation
of BI is explained in § 2. An elementary version of the possible worlds semantics was briefly described in
the introductory paper on BI [38]; in this paper that semantics is developed more fully, with a substantial
collection of computational examples. A detailed account of (propositional and predicate) BI’s semantics
(elementary, categorical, and topological) and proof theory (including typed �-calculi and their models),
will appear in a forthcoming monograph [42], which therefore includes some content in common with the
present paper, which nevertheless presents a quite distinct perspective.

Our starting point in this paper is the monoidal semantics of substructural logics, which was indepen-
dently discovered by several researchers in the late 1960s [27, 11, 52, 48]. The version of the semantics we
use is based on a preordered commutative monoid � � ��� Æ� ���� of possible worlds. The basic idea
is to use the monoidal structure to define the semantics of the multiplicative, or substructural, connectives
(� , �, �� , in BI’s notation) in the standard way, while using also a standard interpretation of the additives
(�, �, �, �, 	). In the first, elementary, version of our semantics, the interpretation of additives is just
Kripke’s semantics of intuitionistic logic, formulated using the comparison relation � in �. When the
order is discrete, this amounts to a semantics of classical logic in a powerset Boolean algebra. In our most
sophisticated semantics, the semantics of multiplicatives is again based on the monoidal structure, while
that for additives is based on Grothendieck sheaves. BI accepts the multiplicatives and additives as being
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of equal status, with a semantic treatment of the additives which is particularly straightforward, requiring
no modifications in order to exclude certain properties (such as distributivity) or certain connectives (such
as full intuitionistic or Boolean negation).

Kripke’s semantics of intuitionistic logic may be motivated by a notion of exploration: each possible
world models a state of knowledge, or amount of information, and states of knowledge, or amounts of
information, are related by a comparison relation. The worlds � and � stand in relation � � � just in
case � models a “larger” state of knowledge. The forcing relationship � 
� � asserts that � is sufficient
knowledge to support proposition �. From a similar philosophical perspective, our preordered monoid
semantics of BI may be motivated by the notion of resource: each possible world models a quantity of
resource. Quantities of resource � and 	 may be combined, to form a new quantity of resource, � Æ 	,
and quantities of resource, � and 	, may be compared, � � 	, just as amounts of information may be
compared. Briefly, we think of the forcing relation � 
� � as asserting that the resources� “are sufficient
to make � true”.

The notion of resource, encompassing concepts such as processor time, memory, cost of components
and energy requirements, has a basic rôle in computational systems, where it is a central organizing concept
that guides development. Indeed, in his seminal text on operating systems [5], which includes a discussion
of resource of rare clarity, Brinch Hansen states:

The word resource covers physical components, processes, procedures and data structures; in
short, any object referenced by computations.

Particularly important here is the use of “referenced”. What this illustrates is that resources are often
uniquely identifiable or located. Examples include addressible locations in computer memory, web ad-
dresses identified by URLs, and people. This calls the assumption that Æ be a total operation into question,
and suggests a first refinement of the basic model of resource arising from preordered monoids: in order
to use Æ to talk about different collections, it is useful for Æ to be partial. For example, if � � and ��

describe sets of uniquely identifiable resources, then we can stipulate that � � Æ�� be defined only when
the resources described are disjoint. We will see later that this kind of partiality is useful when accounting
for update, and for allocation and deallocation.

We begin our arguments, in § 2, with a brief proof-theoretic description of BI, including a sketch of
its categorical semantics. In § 3, we introduce three semantics for BI: Firstly, we give an account of
BI-algebras. Secondly, via a brief diversion to give account of BI in terms of Gabbay’s notion of fibring
[18, 42], we give a Kripke forcing semantics, based on an algebra of worlds which can be directly motivated
our basic model of resource.1 Thirdly, we discuss BI’s partial monoid semantics, explaining its value in
resource modelling.

After presenting this material, we consider, in § 3.5, the technical issue of completeness. BI’s calculus
forces a rather delicate treatment of inconsistency which forces us to refine the elementary Kripke forcing
semantics to exploit technically its inherently topological structure. Specifically, we explain how the ele-
mentary version of the forcing semantics is complete for BI without inconsistency � but incomplete when
consistency is added, and discuss how to recover completeness for BI with � by moving to topological set-
ting within which � is internalized. We conclude § 3 with a summary of the technical properties, including
completeness, of a semantics based on partial monoids, consequences of which include the decidability
and the finite model property for propositional BI [19]. Note that full propositional linear logic, with ex-
ponentials, is undecidable even when restricted to the intuitionistic fragment, that the status of MELL is
unknown, and that neither has the finite model property [26, 29]. Note also that the releveant logic R is
undecidable [45].

In § 4, after further discussion of resource modelling, we present a number of concrete models, which
illustrate a range of features of resources, including: distribution (Petri nets, Ambients); resource allo-
cation, deallocation and access (the separation model); update (the pointer model); group membership
(logic programming); and cost (coins required for purchases). The richness of these models provides many
challenges for the development of a good general model of resource.

Our technical development culminates, in § 5, with a less elementary semantics. It is again based on
(preordered) commutative monoids but this time topological concepts (topological monoids and sheaves)

1Technically, the types of models arising in the two semantics are both instances of the class of categorical models used to interpret
BI’s proofs. However, they are conceptually quite distinct. We shall return to this point in the sequel.
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are brought to bear in order to give a complete account of inconsistency, i.e., BI with � and complete-
ness. Our most sophisticated semantics, for which we give a detailed proof of completeness, is based
on Grothendieck sheaves on preordered monoids. We show that this semantics encompasses the “pointer
logic” examples, the elementary formulation of which is based on partial monoids.

2 A Proof-theoretic Perspective

In this section we recall the fundamentals of BI from the point of view of its proof-theoretic roots first
discussed in [38]. In terms of provability, the description here is equivalent to the algebraic account given
in the next section; some readers may wish to skim this section and refer back as necessary.

Linear logic [20] provides a system within which connectives defined by multiplicative and additive
rules co-exist. Specifically, in the intuitionistic linear setting, we get both multiplicative conjunction, intro-
duced by

�� � �� �� � ��

����� � �� � ��

and additive conjunction, introduced by

� � �� � � ��

� � �����



However, linear logic gives no corresponding analysis of implication: Starting from its basic multiplicative
implication,�, introduced by

�� � � �

� � �� �

linear logic recovers not merely additive but intuitionistic implication, �, via its modality, �: there is a
translation of intuitionistic logic into intuitionistic linear logic which renders � � � as ����� �.

However, one can ask whether it is possible to have both a multiplicative and an additive implication
co-existing without recourse to modalities. From the point of view of natural deduction, having the two
requisite elimination rules together is unproblematic:

� � �� � � � �

��� � �
� �

� � � � � � � �

� � �
� �


But the co-existence of the two requisite introduction rules presents an immediate difficulty: Given

�� � � �

� � �� �
� ��

how can we distinguish � � ? A semantically clean solution (cf. an alternative, semantically less desirable
solution described in [51] and discussed in [42]) is to introduce a context-forming operation “;” in addition
to “,”. Then we can formulate a second introduction rule:

��� � �

� � � � �
� �


As a consequence we form not finite sequences of assumptions but rather finite trees, with assumptions
at the leaves and “,”s and “;”s at the internal nodes. Such a structure is called a bunch [13, 43, 38, 42].
Bunches are given by the following grammar:

� ��� � 
 �� 
 ��� 
 �� 
 �� � �

in which �� and �� are units for “,” and “;”, respectively. We write ���� to denote that � is a sub-bunch
of � in the evident sense. We then take the following equivalence , 
, on bunches:

• Commutative monoid equations for “,” and ��;
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IDENTITY AND STRUCTURE

� � �

����

� � �

� � �

 �where � 
 �� �

���� � �

������� � �
�

������ � �

���� � �
�

MULTIPLICATIVES

�� � �
� �

����� � � � � �

���� � �
� �

� � � � � �

��� � � � �
� �

���� �� � � � � � � �

���� � �
��

�� � � �

� � ��� �
�� �

� � ��� � � � �

��� � �
�� �

ADDITIVES

�� � 	
	 �

����� � � � � 	

���� � �
	�

� � � � � �

��� � � � �
��

������ � � � � � � �

���� � �
��

��� � �

� � � � �
� �

� � � � � � � �

��� � �
� �

� � �
� � �

��

� � ��
� � �� � ��

�� � 	� 
� � �
� � � � � ���� � � ���� � �

���� � �
��

Table 1: Natural Deduction System for BI: NBI

• Commutative monoid equations for “;” and ��;

• Congruence: if � 
 ��, then ���� 
 �����.

Given this structure, we can define BI, the logic of bunched implications [38, 41, 42], as a natural
deduction system, as in Table 1, in which we use �� , pronounced “magic wand”, for multiplicative impli-
cation and �, pronounced “star”, for multiplicative conjunction, � and � for their additive counterparts,
and � for disjunction. The units of �, � and � are denoted � , 	 and � (inconsistency), respectively.

Notice that Weakening (W) and Contraction (C),

���� � �

������� � �
�

������ � �

���� � �
��

are permitted for “;” but not for “,”. Notice also that the rules for the additives are presented in the multi-
plicative style but with combination of bunches using “;”. Thus the more familiar additive forms arise via
Contraction.
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The metatheory of this system is discussed in [42], where it is shown that NBI is strongly normalizing
and has the subject reduction property. BI may also be presented as Cut-free sequent calculus [42]. Note, in
particular, that we have freely combined propositional intuitionistic logic and propositional multiplicative
intuitionistic linear logic.

Corresponding to BI’s natural deduction system is a lambda calculus, ��. The correspondence be-
tween �� and BI’s natural deduction system follows the pattern for intuitionistic logic except that we have
two abstraction operations (and so two applications) corresponding to the additive (�� � �
� ) and multi-
plicative (�� � �
� ) implications. The metatheory of �� is discussed in [42] and its applications to the
semantics of Idealized Algol and Syntactic Control of Interference are discussed in [38, 37, 42, 36].

Categorically, BI’s proofs can be interpreted in doubly closed categories (DCCs) which carry two
symmetric monoidal closed structures, one of which is cartesian. This structure provides a crisp accuont of
the essential difference between BI and linear logic: to model linear logic two closed categories are used
(where one is often a Kleisli category [4]), instead of a single category with two closed structures. See
[38, 37, 42] for a fuller account of the differences with linear logic.

The two monoidal closed in a DCC structures are used to interpret the multiplicative conjunction and
implication and the additive conjunction and implication in the usual adjoint relationship [28]:

�� � ���� �� ���� � �� and �� � ���� �� ���� � ���

where � is a symmetric monoidal product, with corresponding internal hom � � �, and � is cartesian
product, with correponding internal hom � � �. To interpret �, we must also have co-products (bi-
DCCs). A DCC alone does not constitute a definition of a model of BI, for which we must also have an
interpretation of BI’s syntax. Such an interpretation is a function from BI’s language of propositions to the
objects of a DCC, defined by induction on the structure of propositions.

The interpretation of BI in a bi-cartesian DCC, with the two closed structures ��� 	��� and ��� ����
and co-product �
� ��, is given by a function ����� such that:

��� � ��� � ����� 
 �����

����� � �

��� � ��� � ����� � �����

��	�� � 	

��� � ��� � ����� � �����

��� � ��� � ����� � �����

��� �� � �

����� ��� � ����� � �����

We interpret a bunch � by replacing each “,” with � and each “;” with �. We write ������ when we want to
indicate that the interpretation is in the (bi-C)DCC �.

Soundness and completeness results for the interpretation of BI’s proofs in DCCs are given in [42].
Examples of DCCs are discussed in [38, 42], including ��� � ���, in which the tensor product and

function space are given by

� � �	� ��

���� ��� � ���� ��� � ���� � ��� 
 ��� � ��� � ��� � ��� 
 ��� � ����

���� ���� ���� ��� � ���� � ��� � ��� � ��� � ��� � ��� � ��� � ����


This model can also be used to show that BI’s treatment of intuitionistic implication is quite different from
linear logic’s. Specifically, we can see that there is no functor

� � ���� ��� � ���� ���

such that �� � � �� � � � : we have that �	� �� � �
� 
� � �
� 	� but, for any�, � � �
� 
� � ���� �,
for sets � and � of the same cardinality. Thus, in general, there is no way to interpret linear logic’s
modality �, with the property that � � � �� ����� �, as an endofunctor on models of BI.
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A general construction of DCCs is given by Day’s tensor product [11]. Given a small (symmetric)
monoidal category ��� Æ� ��, there is a (symmetric) monoidal structure on the category �� ��� Set�, defined
as follows: The unit � of the monoidal structure is ���� � �. Given functors � and � , the formula for the
tensor product is written using co-ends:

�� � � �� �

� ��� �

�� � �� � � ����� � � ��


The formula for� uses an end:

�� � � �� �

�
�

Set���� � �� � � �� �� Set�
��

������ � �� � ���


The formulæ for ���� �� and �� � � �� are both contravariant in �, giving the morphism parts of the
functors.

This construction also provides the basic categorical framework within which we can formulate the
theory of Kripke models for BI [38, 42], wherein the semantics of proofs is also developed. We return this
point in § 5.

3 A Semantic Perspective

We begin our semantic development, in § 3.1, with a basic algebraic semantics of BI, together with BI’s
associated Hilbert-type proof system, based directly on preordered commutative monoids. The Hilbert-
type calculus, which we show to be equivalent to NBI, will provide a convenient basis, in § 5.3, for proving
our most general completeness theorem. In § 3.2, we introduce BI’s elementary possible worlds semantics
and, in § 3.3, pause to relate BI to Gabbay’s fibring of logics [18]. We proceed, in §§ 3.4 and 3.5, to discuss
soundness, completeness and incompleteness results for BI’s elementary possible worlds semantics.

3.1 An Algebraic Semantics and a Calculus

For the remainder of the paper, we shall be concerned primarily with truth and provability, rather than
the structure of proofs. For technical simplicity, therefore, we present a simple algebraic semantics and a
simple associated Hilbert-type calculus for BI [42]. This presentation of BI does not make use of bunches,
i.e., BI’s tree-structured contexts, described in § 2.

In order to motivate the algebraic semantics, it is useful to recall briefly BI’s categorical interpretation,
sketched in § 2: The main point is that we have a single category with two adjunctions,

�
 ����� �� �
���� �� and �
 � ���� �� �
�� � ���

that characterize the two implications. The algebraic models we will present are collapsed versions of
these categorical structures, where the additive implication � corresponds to intuitionistic logic and the
multiplicative �� to a basic substructural logic.

To describe the models, first recall that Heyting algebras are the algebraic models of intuitionistic
propositional logic. A Heyting algebra is a lattice with greatest and least elements in which the meet � � �
is residuated, which is to say that there is an implication operator, �, satisfying

� � � � � iff � � � � �


An algebraic model of a basic substructural logic containing conjunction �, unit � and implication �� is
similar, except that � is not required to be meet, and � is not required to be top. That is, we would require
a partial order with a (monotone) commutative monoid structure that is residuated, so that

� � � � � iff � � ��� �


Because we have all of the connectives of intuitionistic logic and the basic substructural logic at the same
time, we simply ask for a single algebra that has both kinds of structure:
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� � �

� � 	 � � �

� � � � � �

� � � � �

� � �� � ��

� � ��
�� � 	� 
�

� � � � � �

� � � � �

� � ��
� � �� � ��

�� � 	� 
�

� � � � �

� � � � �

� � � � � � � �

� � � � �

� � �� � ���� �� � �� � � � � � ����� � � �

� � � � � �

� � � � � � � � � � � � � �

� � � � �

� � ��� �

� � ��� � � � �

� � � � �

Table 2: Hilbert-type System for BI: HBI

A BI-algebra is a Heyting algebra equipped with an additional residuated commutative monoid
structure.

Note that the same underlying order is used to describe the residuated structure in both cases; this corre-
sponds to the DCC structure in categorical semantics. Having two residuated structures for one preorder
is intimately related to the possibility of having a possible worlds semantics that directly combines the
monoidal semantics of substructural logics and (Kripke or Grothendieck) semantics of intuitionistic logic.

From this notion of BI-algebra, it is straightforward to derive a collection of axioms and rules for prov-
ing judgements � � �, where the formulæ � and � are built from propositional variables, the additive
connectives �, �, 	, � and �, and the multiplicative connectives � , � and �� . The axioms and rules
of this Hilbert-type system, HBI, given in Table 2, are those for a presentation of intuitionistic proposi-
tional logic together with the rules for the substructural fragment. This way of formulating the system
is proof-theoretically unsophisticated but it is adequate for capturing provability and admits straightfor-
ward soundness and, in particular, completeness proofs with respect to both the BI-algebras introduced in
this section and the Grothendieck topological models discussed in § 5.3. Obviously, by induction on the
structure of proofs in HBI and NBI, we have the following:

Lemma 1 (equivalence of NBI and HBI) � � � is provable in HBI iff � � � is provable in NBI. �

The reader will recognize in HBI laws for coproducts, products, tensor products, and implicational
adjunctions. We say that “� � � is provable” to indicate that � � � can be proven using this system. This
structure also explains how to give the appropriate notion of interpretation of BI’s formulæ in BI-algebras,
so that can state the expected soundness and completeness properties. Let � be BI-algeba. We write
������ � ������ if the interpretation of � in � is below the interpretation of � in �. If ������ � ������ for all
interpretations in all BI-algebras, then we write ����� � �����.

Theorem 2 (soundness) If � � � is provable in HBI, then ����� � �����.

Proof-sketch By induction on the structure of proofs in HBI. �

By constructing a term BI-algebra, we get completeness for HBI and BI-algebras.

7



Lemma 3 (model existence) There is a BI-algebra � and an interpretation ������ such that if � � � is
not provable in HBI, then ������ �� ������ .

Proof-sketch The Heyting part of the algebra is constructed in the usual way [53]. The remaining key
components are defined as follows:

• Elements of the algebra are equivalence classes of propositions ��� given by inter-derivability;

• ��� � ��� iff � � �;

• ��� � ��� � �� � ��;

• � � �� �;

• ���� �� � ����� ���.

The result follows. �

Theorem 4 (completeness) If ����� � �����, then � � � is provable in HBI.

Proof By the contrapositive. Suppose that � �� �, then, by Lemma 3, we get ����� �� �����. �

We will give several models in which the additives are treated classically. So we define “Boolean BI”
to be the consequence relation generated by the rules of HBI, plus reductio ad absurdum:

� � �� � �� � �

� � �
�




An algebra model for this system is a Boolean BI-algebra, a BI-algebra in which the Heyting (additive)
component is, in fact, Boolean.

Whilst the notion of BI-algebra is useful as a reference point, the definition itself does not suggest
directly a declarative way of reading formulæ; neither does it tell us if there are any interesting BI-algebras.
Possible worlds models, with respect to which we may give a forcing semantics, address both of these
points.

3.2 Forcing Semantics

In this section, we consider BI from the perspective of truth-conditional semantics. The basic idea is to
adapt the intuitionistic idea of the creative subject exploring a collection of pre-ordered states of knowledge,
or worlds, to a setting in which the collection of worlds carries the structure of a model of resource.

Following from the Introduction, we take the collection of worlds to be given by a pre-ordered (com-
mutative) monoid,

� � ��� Æ� �����

where� is a set of resources, Æ is a (commutative) monoidal combination, with unit �, and � is a pre-order
on � subject to the bifunctoriality, or monotonicity, condition that that if � � � �� and 	� � 	�, then
�� Æ 	� � �� Æ 	�. Such a structure may be seen as modifying the intuitionistic structure by introducing
a decomposition of worlds, given by Æ. Starting from this structure, we give the following:

• A basic forcing semantics for BI without �, based on a satisfaction relation of the form

� 
� � �

where � � � and � is BI formula, including appropriate soundness and completeness theorems;

• Incompleteness of the basic semantics in the presence of �;

8



• A partial monoid semantics, suggesting a different class of models, well-motivated by resource se-
mantics, for which a completeness theorem is obtainable (though beyond the scope of this article)
[19].

We will indicate, without going into too much technical detail, how the forcing semantics, at least in the
absence of inconsistency, may be seen as a restriction of the semantics of BI’s proofs in DCCs.

Before we proceed to develop BI’s forcing semantics with respect to preordered monoids of worlds,
we make a brief technical detour.

3.3 BI via Fibring

It is possible, following Gabbay’s Preface to [42], to understand BI in terms of Gabbay’s notion of fib-
ring logics [18]. Let �� and �� be two logics with implication �� and ��. Assume these logics are
characterized by semantics and models of the form

�� � � ����� ��� !�� and �� � � ����� ��� !���

where  � is a set of possible worlds, �� �  �� !� is the assignment to the atoms and �� is a family of
relations and/or functions used to define, recursively, the truth table for the connectives of � �. Combining
the two languages allows the formation of the language �� �����, in which formulæ may be formed by
freely using connectives from both �� and ��.

There are various ways of providing semantics for the combined language but a simple and transparent
methodology is that of dovetailing. The semantics for dovetailing has the form � �� ����� �� !�, obtained
by putting both semantical conditions �� and �� side-by-side and joining the requirements on ! of both
logics. This methodology is quite uniform: The combination of logics is done methodologically, not logic-
by-logic, so that for given components, their composite is determined.

Consider � � �p �� �q �� p��. From the point of view of language ��� � has the form p �� � ,
where � is atomic. �� does not recognize � � �q �� p�, because �� is not in the language. Let
�� � � ����� ��� !�� be a model of �� and start evaluating " �� 
, for " �  �. In the inductive course
of evaluation of ��, we will have occasion to evaluate # � � for some points # �  � appropriately related
to " via the relations and functions of ��. If � were a real atom of ��, then the assignment !� would have
given us the value but � � �q �� p� is not a real atom. So how can we get a value for # �� �? The
answer is that we fibre a (possibly set of) model(s) of the language � �, with each point # �  �. Let ���� be
the fibring function and write � ����#� ��

�
� � � �� ��

�
�� �

�
�� !

�
�� and let

# �� � iff ��� �� � (in ��
�)


The model��
� knows how to give a value to � .

The above is fibred semantics for the combined language. The function � ��� assigning to each # a
model ��

� is a fibring function. Of course, we also need an � ��� for passage from �� models to ��

models. Dovetailing amounts to insisting that # � ���. A straightforward calculation (see [17] for the
ideas) calculation shows that we can take models of the form � ������� �� !� and evaluate �� connectives
using ��, respectively.

If we perform dovetailing on intuitionistic � with the Kripke semantics � ��� !� and on substructural
�� with the semigroup semantics � � Æ� �� !�, then we automatically get an algebra of worlds of the form
� ��� Æ� �� !� satisfying the following condition below:

� � �� and $ � $� imply � Æ $ � �� Æ $�


This is our bifunctoriality condition, which may be seen arising from the persistence, or resource-preserving
property, of the intuitionistic connectives.

3.4 Basic Forcing Semantics and Soundness

The semantics is stated in terms of a judgement form � 
� �, which says that formula � is true at, or with
respect to, a world �.
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As we have seen, we start with a preordered commutative monoid of worlds, � � ��� Æ� ����, for
which we have the bifunctoriality condition and for which equality in the monoid (up to which the monoid
laws hold) is that which is given by the equivalence relation � � �. Given such a monoid, semantic
clauses can be given for a form of truth, conjunction and implication as follows:

� 
� � iff � � �

� 
� � � � iff �	� 	� � � �� � 	 Æ 	� and 	 
� � and 	� 
� ��

� 
� ��� � iff �	 � � �	 
� � implies 	 Æ� 
� ��

Now, the conjunction thus obtained does not admit Weakening or Contraction generally, in that the impli-
cations

- if � 
� � � �, then � 
� �, and

- if � 
� �, then � 
� � � �

do not necessarily hold. However, it does have the implicational adjunction

- � 
� �� � ���� � iff � 
� ��� ���� �� .

Variations on this semantics have been taken as the basis for a number of notions of model for substructural
logics (e.g., [52, 20]).

Of course, a substructural logic with only these three connectives is very weak and the way in which
other connectives are added is one place where significant divergence occurs. However, a simple point is
central: there is already enough structure to interpret all of the connectives of intuitionistic logic, in the
style of possible worlds semantics, without adding anything to the basic set-up:

� 
� � � � iff � 
� � and � 
� �

� 
� � � � iff � 
� � or � 
� �

� 
� � � � iff �	 � �
	 
� � implies 	 
� �

We must also handle the units of � and �, 	 and �, respectively:

� 
� 	 always

� 
� � never


While the clause for 	 is straightforward, we shall see later that that for � is somewhat problematic.
All propositions are required to satisfy

Kripke Monotonicity (K): � 
� � and 	 � � implies 	 
� �.

Given these definitions, together with an assignment 
"��#��� of the atomic propositions which are
true at each world �, so that

� 
� p iff p � 
"��#����

we can define a semantic notion of logical consequence. This semantics can formulated in the category
��������� of presheaves over the evident preorder category � ��.

Let � � ��� Æ� ���� be a preordered commutative monoid. We write � 
�� � just in case � 
��
��, where �� is the formula obtained from � by replacing each “,” by � and each “;” by �. We then write
� 
�� � just in case, for all � in � , if � 
�� �, then � 
�� �. Finally, we write � 
� � just in case,
for all �, � 
�� �.

Lemma 5 (soundness) If � � �, then � 
� �.
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Proof A straightforward induction on the structure of proofs [42]. �

Soundness can also be stated in algebraic terms, by saying that the the collection of downwards-closed
subsets of a preordered commutative monoid forms a BI-algebra. The semantic clauses just given specify
the algebra structure. Note that there is nothing essential about intuitionistic logic here. In the special
case in which the preorder is an equivalence relation, the semantics will validate the law of the excluded
middle, so we get a Boolean BI-algebra (in this case, the semantic clauses for additives reduce to those of
a semantics of classical logic in a powerset).

The possible worlds semantics gives a large number of models of BI, for the simple reason that there
are so very many (preordered) commutative monoids. This brings up a curious historical fact. In many
presentations of systems of substructural logic — see, for example, [45] — this (or a similar) semantics
is altered, typically by imposing additional conditions, with the effect of precluding the existence of the
additive implication � (be it intuitionistic or classical). The reason, so it seems [12], is that if one omits
Weakening from standard sequent calculus then the law

� � �� � %� �� �� � �� � �� � %��

of distribution, is lost (distribution is a consequence of having a full strength intuitionistic �).
However, this choice seems curious: a simple semantics is altered to match a somewhat singular choice

in the proof theory. The result is a logic in which it is very difficult to read the additive connectives in a
simple way — where � means “and” and � means “or”: these lead to distribution.

Independently of these general arguments, we stress a practical point: to deny � is to deny access to
the structure of a host of simple, naturally occurring, models. Of course, if none of these models were
interesting the price would not be so great; this brings us back to our motivation in resource modelling and
so to what we therefore call the resource interpretation of the connectives. In the resource interpretation
we think of a formula as making a declarative statement about some state-of-affairs but the truth of it is to
be judged relative to access to available resources. Consider � � �. We read it informally as follows:

� � � is true just if the current resource can be decomposed into constituents in such a way as
to make � true of one constituent and � true of the other.

Similarly, we read ��� � as follows:

��� � is true just if, whenever we are given resources that make � true, combining with what
we already have, � will then also be made true.

This kind of reading also works for the additive connnectives; for example:

� � � is true just if any consistent resource that makes � true also makes � true.

That the resource interpretation works for the full-strength additive implication, as well as conjunction and
disjunction, is significant, since it is the extension of a reading of multiplicatives to other connectives that
is often problematic in substructural logics.

A very simple model, which is obtained by taking worlds as natural numbers, where � is the usual
less than (reversed), Æ is addition and � is �, may readily be seen to support these intuitions (to which
we return in § 4.6).2 We emphasize that neither our monoidal model of resource nor the corresponding
resource interepretation of the connectives is forced by our semantics. Rather, they merely are supported
by it.

We conclude by remarking that an alternative presentation of the semantics of substructural connectives
is both possible and commonplace in relevant logic [13]. Briefly, our use of a monoidal product Æ together
with an order � may be replaced by a ternary relation� on a set of worlds, so that, for example, the forcing
relation for �� is rendered as

& 
� ��� � iff for all ��	 � � such that ��&��� 	�, if � 
� �, then 	 
� �.

2Note that this is an affine model: Weakening, � � � �� �, is admissible and � � �.
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3.5 Completeness and Incompleteness

The monoid semantics gives us a way to construct BI-algebras but the algebras obtained are very special.
Although it gives a limited class of models, Kripke’s semantics is still complete for intuitionistic logic. So
it is natural to ask: what is the status of the elementary monoid models with respect to BI ?

The key issue is the handling of inconsistency in the presence of multiplicative connectives. The propo-
sitions p and p�� � are both consistent yet the proposition p � �p �� �� is inconsistent since

p � �p �� �� � �


This is not a problem in and of itself, but the fact that � does not preserve consistency, together with the
treatment of � in the elementary semantics, leads to incompleteness.

Proposition 6 (elementary incompleteness) �p �� �� � � � �q �� �� � � 
� �p�q�� �� � � in the
elementary monoid semantics but �p�� �� � � � �q �� �� � � �� �p � q �� �� � � in BI’s calculus.

Proof The key to showing incompleteness is that the formula ���� �� � � expresses consistency of �
in the monoid semantics, in the following sense:

� 
� ���� �� � � holds iff there is an 	 such that 	 
� �.

Now, we can use the totality of the monoid operation against itself.
To see why the semantic judgement in the proposition is true, given 	 where 	 
� p and � where

� 
� q, we have that 	 Æ� 
� p � q and, because of the existential formula characterizing �p �� �� � �,
this is enough to give us the judgement.

The unprovability of the syntactic judgement is easy to establish via the cut-elimination theorem for
BI’s sequent calculus [41, 42]. (Also, at the end of § 5.3, we give an explicit counter-model.) �

A more conceptual, partial explanation of this incompleteness can be seen by considering where a
standard completeness argument breaks down. In this (which is essentially a Yoneda lemma argument), we
use the propositions of BI to build a term model. Formally, the term monoid has the set of formulæ as its
underlying set and the order and monoid structure are given by

- � � � iff � � �,

- � Æ � � � � � and

- � � � .

Then the main subsidiary lemma is

� � � is provable iff � 
� � in the term model

This lemma is established by a routine induction on �, but there is a sticking point: the proof breaks
down when we encounter � or �. For example, from � � � ���� it does not follow that � � �� or � � ��,
as would be needed for the result: take � � �� � ��. Similarly, the monoid semantics would require that
� � � never holds: but this is not the case when � � �.

However, the proof based on the Yoneda lemma does go through for the �����-free fragment, so we
may conclude the following:

Proposition 7 (completeness for �����-free fragment) If � and � are �����-free formulæ then � � �
is provable iff � 
� � in all monoid models. �

The absence of � is not important, however. The failure of the argument of � represents a failure of
the easy proof, based on the Yoneda lemma, rather than the failure of completeness. In [42], it is shown
that this elementary result can be extended to the �-free fragment, using an argument (beyond our present
scope, but see § 5.2) based on the construction of prime bunches. Proposition 6 shows that the restriction
on � cannot be removed.
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We emphasize also that the incompleteness of the elementary monoid semantics arises from the inter-
action between the two implications and inconsistency, �.

So, what are we to make of our completeness and incompleteness results so far ? The answer lies in the
internalization of inconsistency by the semantics. Consider that the (complete) algebraic models in § 3.1
or, more generally, the categorical semantics of proofs in [38, 42] include representatives for inconsistency
(the initial object, �, which interprets �). The elementary forcing semantics, in contrast, can handle incon-
sistency only by denying the existence of a world at which � is forced. Completeness for a monoid-based
forcing semantics can be achieved in settings in which internal representives for inconsistency are available.
We develop such a semantics [42] in §§ 5 and 5.3.

3.6 Partial Monoids of Resources-as-worlds

We have seen how a basic model of resource corresponds to the algebra worlds required for BI’s possible
worlds semantics. We have explained some of the theory but also described a technical problem: the
treatment of � in the elementary semantics yields an incompleteness. We have discussed internalizing �
and we present the details of this solution [42] in § 5.3. In terms of resources, a way to see the problem is to
trace it to the assumption that the combining operation Æ is always defined; but why, in terms of resources,
should it be ?

In many situations resources are considered as located, or uniquely identifiable. Examples include
addressible memory locations in computer memory, web addresses identified by URLs, and people. In
such cases, in order to use � to talk about different collections, it is useful for Æ to be partial. For example,
if � and 	 describe sets of uniquely identifiable resources, then we can stipulate that � Æ 	 is defined only
when the resources described are disjoint. Then, in a forumula � � � the conjuncts will talk about disjoint
collections of the uniquely identified resources. We shall see later that this kind of partiality is useful when
accounting for update, and for allocation and deallocation.

Mathematically, we give a semantics based on (commutative) preordered monoids, � � ��� Æ� ����,
in which Æ � � �� '� is a partial function (satisfying the evident monotonicity conditions). The key
cases in the forcing semantics based on partial monoids are, of course, for � and for the multiplicatives:

� 
� � iff never
� 
� � � � iff there exist 	, 	� such that �	 Æ 	��� ,

� � 	 Æ 	�, and 	 
� � and 	� 
� �
� 
� ��� � iff for all 	 such that 	 
� �, if �� Æ 	�� , then � Æ 	 
� �,

where � denotes definedness. The utility of such semantics is illustrated in the next section, in which we
develop concrete computational models based directly upon it.

The soundness and completeness of the partial monoid semantics for BI with � was is shown in [19].
The methods of [19] go well beyond the scope of this paper but build on it by using the Grothendieck topo-
logical models that we introduce in § 5.3 to formulate the system of semantic tableaux. The analysis in [19]
utilizes labelled semantic tableaux, with the algebra of labels begin given by the worlds of a Grothendieck
topology, q.v. § 5.3, and yields several strong logical results for propositional BI, including decidability
and the finite model property.

4 Computational Models

So far we have provided a conceptual discussion of the notion of resource as a basis for BI’s model theory
and developed the basic meta-theory of an elementary forcing semantics.

In this section, we consider BI’s use as a basis for a range of models in which the notion of resource is
concrete:

• Petri nets: classical true concurrency [15];

• Ambient logic: mobile processes [8];

• Memory allocation and deallocation: a basic separation model [46, 22];

13



• Pointer logic: program logic for mutable data structures [22];

• Logic programming: sharing and group membership [2, 3];

• Money: an example of cost.

These models give concrete examples of the resource interpretation of BI-algebras and BI’s forcing seman-
tics.

Resource, however, is a multi-faceted notion, with aspects such as location, ownership, protection,
and competition for resources. These concepts are reflected, either explicitly or implicitly, in some of the
specific models which follow in this section but are not part of the mathematical axiomatization of resource
that we have so far developed. To obtain a richer theory would require a thorough treatment of the dynamics
of processes. We emphasize, however, that it is not dynamics alone, with (say) associated modalities, that
is at issue: rather the question concerns the interaction between dynamics and resource.

So before considering these concrete examples, it is worth pausing to ask whether it is possible to add
structure to our resource semantics, corresponding to ideas such as sharing or ownership, or to add axioms
which would exclude examples that are not “resource-like”. These questions are the subject of current
research but we conjecture that an appropriate logical setting is given by a forcing relation of the form

� 
 ( 
� ��

in which we intend that� denotes an element of resource, perhaps drawn from a monoidal structure of this
kind we have discussed, ( denotes a process term located at a resource �, and � denotes a propositional
assertion in a logic based on BI. The whole judgement, � 
 ( 
� �, is then read as “the propositional
assertion � is true of process ( located at resource �”. This gives us a direct way to approach the concept
of distributed resources.

Given a framework along these lines, we can see how it is possible to define modalities which describe
the interaction between resources and processes. There are many choices available in their definition, but
two general classes may readily be identified.3 Firstly, “temporal” polymodal necessity and possibility,
which require no evolution of the resource component and which provide a basis for the modalities occur-
ring in the examples of this section:

� 
 ( 
� �"�� iff for every ), if ���( �
�

�� ���)� is an evolution located
at �, then � 
 ) 
� �;

� 
 ( 
� �" � iff for some ), if ���( �
�

�� ���)� is an evolution located
at �, then � 
 ) 
� �.

Here, an evolution ", such as an action in a process algebra but whose internal structure is not considered
here, is a map between pairs of resources (worlds) and propositions. These judgements indicate how to
generalize process logics such as that presented in [34] to include explicit resource components.

Secondly, we may also introduce “spatial” modalities, which do require an evolution of the resource
components of their defining judgements and whose relationship with the temporal modalities is analogous
to the that between �� and � (or, more closely, that between the additive quantifiers (� and �) and their
mutliplicative counterparts (���� and ����) [38, 41, 42]). Here, the intuition is that the resource required
for an evolution may be located separately from the data which will evolve. For example, we might define
a spatial necessity as

� 
 ( 
� �"����� iff for every 	 and ), if ���( �
�

�� �� Æ 	�)� is an
evolution located at 	, then � Æ 	 
 ) 
� �.

The detailed technical development of these ideas is beyond our present scope. For now, we content
ourselves with the examples which follow.

3Here we assume we are starting from Boolean BI, i.e., with classical additives, so that we may use the ordering, �, in a preordered
monoid to interpret the temporal modalities. (Of course, the use of simple ordering is itself a simplified treatment of the more general
relational notion of modality.) It is possible to take intuitionistic additives, but since they must exploit the ordering � for their
definition, we must impose, using the techniques discussed in [49], additional relational structure to give meaning to the modalities.

14



4.1 Petri Nets

Petri nets provide a basic, concrete, model of computation, which fits well with the resource interpretation
of BI’s semantics. A central tenet of net theory is that resource is distributed throughout a net, in the form
of tokens that reside in places. A distribution of tokens is called a marking; a net evolves according to local
rules which show how to go from one marking to another. As in [15], we consider a basic notion of net
which does not have capacities.

Formally, a net ! � �(� *� +,�� +�#"� consists of sets ( and * of places and transitions and two
functions +,�� +�#" � * � �, from transitions to markings, where a marking is a finite multiset of places
and � denotes the set of all markings. A marking may be regarded as a function � � ( � - from
places to natural numbers that is zero on all but finitely many places. Addition of markings is given by
�� 
 -�+ � �+ 
 -+. We let ��� denote the empty marking.

There are several ways that nets can be used to provide a model of BI. One way internalizes the reach-
ability relation on markings, by conflating it with the intuitionistic ordering in the model. If � and - are
markings, then define

� � - iff there are "�� � such that � � +,��"� 
� � and - � +�#"�"� 
� � 


We can then define a preorder on markings by

� � - iff there are ��� 
 
 
 ��	 such that � ��� � " " " � �	 � -

Then ��� ����
��� is a preordered commutative monoid and so this gives us an interpretation of all the
connectives.

Now, this model is just the Petri net semantics of linear logic described by Engberg and Winskel [15],
except that they did not include �. This omission seems strange in retrospect, given that it exists naturally
in the model. Admitting it enables some of the discrepancies between model and logic observed by Engberg
and Winskel to be avoided. These include the need to state an axiom for distrubition of � over �, which is
implied by the more primitive rules for �, as well as the ability to state negative properties of nets using
#� � � � �.

A basic example is mutual exclusion, where we say that two places cannot be marked at the same time.
To see how this works, consider the following net, which represents processes either producing an item to
a buffer or consuming an item from the buffer:

b tr

� and � denote ready processes and terminated processes, respectively and � represents a buffer whose
tokens are items produced. Then we can say that a process is not both ready and terminated using #�����	�.
Using �� , we can further say that a process is not both ready and terminated in any marking reachable
from a given marking �� � �� �� #�� � � � 	�. Note the rôle of 	 in � � � � 	. It enables the state, at a
given time, to be partitioned into three parts where � is true in one, � in another, and where the third part is
arbitrary.

There are two other natural models of BI using Petri nets. One interprets the � relation on markings
not as reachability, but as multiset inclusion. The other interprets � as equality, and is thus a model of
Boolean BI.

However, if we were to detach � from reachability, we would have to have some other way of ac-
counting for net dynamics. We could certainly do this by using modalities for transitions (e.g., [44]), but a
detailed development is beyond the scope of this paper. The main question is whether a logic of nets could
be obtained that combines a convincing account of multiplicities, as in Engberg and Winskel’s work, with
a straightforward account of dynamics as in temporal logics.
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4.2 Ambient Logic

In [8], Cardelli and Gordon introduced a logic, the “ambient logic”, for describing properties of their
calculus of mobile ambients. Here we relate ambient logic to BI’s resource semantics.

At the core of ambient logic is a notion of a labelled tree. This is described with a process calculus-style
notation, as follows:

(�) ��� � 
 ( 
) 
 ��( � 


The notation ��( � is for an edge labelled �, atop tree ( . These terms come with an equivalence relation 
,
which is the least congruence (with respect to 
 and ����) making ��� 
� a total commutative monoid. This
monoid thus gives us a possible worlds model of Boolean BI.

The ambient logic has a modality, the “ambient match” ����, for dealing with the labelled part ��( � in
the grammar of tree-terms.

( 
� ���� iff �)
( 
 ��)� and ) 
� �


For an example of the interaction of � and match, ����	�� � ��#��	�� says that there is a path in the tree
consisting of an � followed by a � and another path starting with an � which has no � as a successor.

In the original ambient logic, the trees were combined also with process calculus terms. This is just as
in Mads Dam’s thesis [10], except that ambient logic has the full strangth additives of classical logic, rather
than the weaker additives of linear logic (which deny classicaly-valid properties such as distribution of �
over �) that Dam was concerned to model. In fact, for essentially any process calculus one immediately gets
a model of Boolean BI just by observing that parallel composition is part of a commutative monoid, which
gives the semantics of multiplicatives, and by interpreting additives using the boolean algebra structure of
a powerset.

In this specific case of ambient logic, however, the interplay between �, ambient match, and tempo-
ral modalities allows for compact and intuitive specifications of properties about process mobility. For
instance, “eventually the agent crosses the firewall” might be (at least partially) rendered as

�.�	"�	� � /�,���&&�	� � �/�,���&&��.�	"�	� � 	�


Similar, that the agent never enters the firewall might be

�.�	"�	� � /�,���&&�	� � �#�	 � /�,���&&��.�	"�	� � 	�� 


Ultimately, the novelty of ambient logic lies in the interaction between location (	���) and parallelism
(rather than only � as 
). In fact, it is not at this time clear if a substructural logic for, say, CCS or 0-calculus,
with � interpreted directly as 
, would be a useful logic of processes.

An odd property of ambient trees is worth mentioning: it is possible to have several paths with the same
labels. For instance, ������� 
 ������� is a tree with two paths labelled ��, and this tree is distinct from �������.
This feature is motivated by the design of the ambient calculus.

In any case, the ambient logic and its descendents (e.g., [7, 6]) give a collection of naturally-occurring
examples of the possible world models: Mathematically, all the descendents of ambient logic are based on
specific models of the total monoid semantics of BI (advanced by the first author in 1997 and presented
in [38, 42]), along with additional connectives or atomic formulæ. In particular, ambient logic illustrates
our basic point, of the desirability of having full-strength additives alongside multiplicative connectives
(consider the use of classical negation in the statement that the agent doesn’t cross the firewall). Cardelli
and Gordon came to this conclusion about additives independently, which perhaps underlines the naturality
of the simple way of combining multiplicatives with full-strength additives, taken by ambient logic and BI.

4.3 Resource Allocation and Deallocation: The Basic Separation Model

The models discussed so far in this section are all based on total monoids: given worlds � and 	 we can
always form their combination� Æ	. However, we have mentioned that BI may also be given a semantics
based on partial monoids. Here we provide an example which directly makes use of this semantics. We
also show, in § 5.4, that this example may be couched in terms of our most general total semantics.
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Suppose we are given an infinite set ��# � $,�� ,�� 
 
 
%. We think of the elements of ��# as primitive
resources, or resource IDs, that can be allocated and deallocated. The partial monoid structure is given
by taking a world to be a finite subset of ��#, and Æ to be union of disjoint sets. In more detail, where &
denotes undefinedness,

� Æ 	 �

�
� ' 	 if � � 	 � �
& otherwise.

The unit of Æ is the empty set. By taking � to be equality we get a model of Boolean BI. (An intuitionistic
model is obtained by taking � to be inclusion.) With this model, if � � � holds for a given collection of
resources then � and � hold for disjoint subcollections. This is an example of what John Reynolds refers
to as resource separation [47].

Separation gives us a way to talk about allocation and deallocation of resources. To describe this we
consider a simple model where a system state is a pair #��, where # � 1 �, � ��# is a function mapping
variables (�, $,...) to IDs and � is a finite set of IDs (thought of as the set of currently active, or allocated,
IDs). We consider three actions for altering the state. In the following, � and $ are variables:

• � �� $ is the usual assignment command;

• 	����� generates a new resource ID and binds it to �;

• 2�#+�#���� deallocates the ID bound to �.

In order to describe atomic propositions, we parametrize 
� with the # component, writing � 
� � �.
We are technically remaining in a propositional setup, but this obviously paves the wayto a consideration
of quantifiers. The basic proposition is the activity assertion ��"���, which says that the ID denoted by �
is in the state:

� 
�� ��"��� iff $#�% � �.

Notice that the semantics of ��" is “exact”, in that � must describe the only ID in �. We can describe a
“loose” variant using ��"��� � 	.

Here is a Hoare logic axiom for allocation [46]:

$�%	�����$� � ��"���%�

where � is not free in �. To understand this axiom, suppose � holds of an “active set” 	 before 	����� is
executed. Then 	�� will select some ID , not in 	, bind it to �, and add , to the active set. In the resulting
active set 	'$,% the formula ����"��� will hold, because ��"��� will hold in , (with the binding #� � ,)
while � will remain true of 	.

Here is the axiom for disposal [22]:

$� � ��"���%2�#+�#����$�%


In words, if � is active, and � holds for all the allocated resource IDs other than �, then � will hold for the
entire active set after �’s ID is removed. (The exact interpretation of ��" is important for this axiom.)

Notice that there is no “unique reference” property (where only one copy of an ID is present) implicit
in the axiom for disposal. The unique reference property is often suggested as being important for ensuring
that a disposed reference will not be subsequently used. In fact, however, there are many situations where
such a property is impractical to expect, such as when working with doubly-linked lists or graph structures.

To describe a simple example violating “unique reference” we use an equality predicate � � $, which
holds just if � and $ denote the same ID in #:

� 
�� � � $ iff #� � #$.

Then
$�� � $� � ��"���%2�#+�#����$� � $%

is an instance of the 2�#+�#� axiom. Here, � and $ are aliases (different names for the same ID), but
disposal can still be reasoned about. The essential point is that the postcondition does not have ��"�$� or
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��"���. This precludes reasoning about subsequent attempts to dispose � or $ (which are in fact the same
in the postcondition), because the axiom for disposal requires an activity assertion in its precondition.

Aliases of this form can be introduced by assignment. For instance, using the usual Hoare axioms for
assignment and sequencing, we could infer

$��"�$�%� �� $� 2�#+�#����$� � $%


This use of � to account for disposal in a way that is compatible with aliasing is reminiscent of region-based
memory management [50]; see especially the recent [35] for a Hoare logic approach to regions.

Allocation and deallocation are essential operations that systems programs provide for managing re-
sources. But the concept of resource captured by the model in this section is rather trivial: ID’s, without
contents (essentially like LISP gensym symbols, but with disposal). The same thing can be done with com-
puter memory, where we consider the resources to be cells with contents, but then we have one additional
issue to face: update.

4.4 Resource Separation, Pointer Aliasing, and Update

Next we present a model where “resource” corresponds to “portion of computer memory”. In this model
the memory is made up of cons cells, which can have basic data (such as integers) in their components, or
pointers to other cons cells. The model presented in this section is from work on using BI to reason about
pointers [22], which builds on work of Reynolds [46]. (In fact the work on allocation and deallocation
in the previous section is also from [46, 22], but for a simplified model where locations or names do not
have associated contents.) A related example, presented from the point of view of a dependently-typed
�-calculus which is intimately related to BI, can be found in [23].

The inclusion of pointers brings out several issues, most importantly sharing. That is, data structures
are often constructed so that there are two or more pointers to the same cell, as happens when considering
graphs or circular or doubly-linked lists. When this happens, there are multiple ways to refer to the same
cell, or in short, there is aliasing. For example, if we use the notations �
	 and �

 to refer to the first and
second components of a cons cell then �, $

 and �



 are all aliases in the situation represented by the
following box-and-pointer diagram:

�� �
�

� �

���
�

3 4

x y

Traditionally, aliasing complicates the logic of update, because an alteration to a single cell can affect
the values of many syntactically unrelated expressions. The purpose in this section is to illustrate how this
complexity can be avoided, using resource separation. Because aliasing and update are subtle, we treat this
model in more detail that the previous ones.

Formally, the worlds in this model are heaps ! � 3 , which are thought of as collections of cons cells
in storage:

1 �& � �	" ' $	�&% ' 4��
3 � 4�� '
�	 1 �&� 1 �& 


Here, 4�� � $5� 


% is an infinite set of locations and '
�	 is for finite partial functions. Each cell in
memory is identified by a location and when !�5� � ��� �� this represents a situation in which 5 has � in its
first component and � in its second. When !�5� is undedined this represents a situation where there is no
cell in the heap corresponding to 5.

We use a combining operation on heaps that is partial:
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! Æ!� denotes the union of disjoint heaps (i.e., the union of functions with disjoint domains); � is the
empty heap. When the domains of ! and ! � overlap, ! Æ !� is undefined.

The order we consider at this point is discrete: the equality relation on 3 , and the clauses for the additive
connectives remain as in the elementary monoid semantics. This gives us a Boolean BI-algebra, where the
Boolean algebra part is just the set of subsets of 3 . (An alternative, intuitionistic, model is also of interest:
it works by taking the relation ! � !� between worlds to be graph superset of partial functions [46].)

In order to describe atomic propositions, we assume a function # � 1 �, � 1 �& where 1 �, � $�� $� 


%
is a set of variables. The basic proposition is the points-to relation, which has the form � (� ��� , where
� and � range over variables, integers and 	�&:

! 
� � (� ��� iff $#�% � 2���!� and !�#�� � ������#� ��� ��# ,

where �����# gives the value of � in #. Notice the exact nature of this interpretation, where the domain of !
is required to be a singleton: � (� ��� means that � points to ��� in the current heap, and also that � is
the only cell in the current heap.

As a first example in this model, the formula �� (� �� $� � �$ (� �� �� corresponds to the box-and-
pointer diagram pictured earlier. To relate this picture to the formal definition, if the formula is true at a
heap !, then we must have that #� and #$ are locations, by the definition of (�, and that they are distinct,
by the definition of �. For, � splits ! into two subheaps, one where #� is the only defined location and the
other where #$ is defined. Notice the importance of dangling pointers here: the picture corresponding to
the left conjunct is

�

� �
�

�
�

3

x y

while that for the right is

�� �

� �

���
4

x y

Notice that in each subheap we have a dangling pointer, which is a location not in the domain of the heap.
Here is a Hoare logic axiom that corresponds to an assignment to the cdr of a cons cell [46]:

$�� (� $� 6� � �%�

 �� � $�� (� $� �� � �%


The idea of this axiom is as follows: If the precondition holds then, by the semantics of �, we know that �
must be true for an area of memory that excludes the cell �. Therefore, the assignment to �

 cannot affect
�: hence, we can slot the update to the cell into the postcondition, without needing to check for potential
aliases in �. By using �, the operationally local nature of a heap alteration can be mirrored in the logic.

Allocation and deallocation can be treated as in the previous subsection:

$� � �� (� –� –�%2�#+�#����$�%�

$�%	�����$� � �� (� –� –�%
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In the axiom for 	��, we again require that � is not free in �. The –� – notation is used to indicate an
allocated cons cell, where we are unsure of the specific contents. (With quantifiers, � (� –� – can be
regarded as an abbreviation for �$6� � (� $� 6.)

Using the rules for update and disposal, here is a proof outline for a pair of statements for deleting a
node 6 from the middle of a linked list:

$�� (� �� 6� � �$ (� �� 2� � �6 (� �� $�%
�

 �� $
$�� (� �� $� � �$ (� �� 2� � �6 (� �� $�%
dispose(z)
$�� (� �� $� � �$ (� �� 2�%


Because of the placement of � we know that the first statement, �

 �� $, will not affect either of the
assertions $ (� �� 2 or 6 (� �� $. Similarly, � ensures that in reasoning about the 2�#+�#��6� statement we
do not need to check for potential aliases in � (� �� $ or $ (� �� 2.

While � is about separation, the implication �� can be used to describe new, or fresh, pieces of storage.
These two connectives interact in an interesting way: The formula

�� (� �� �� � ��� (� �� ���� ��


says that �� (� �� �� is true in the current heap, but also that if we update the first component to � then �
will be true. To see why, first note that the semantics of � splits the heap, say,�

�

�
��
�3

x

5

Rest
of
Heap

into two portions, one where �� (� �� �� and a second heap where the location denoted by � is dangling:�

�

�
��
�

x

Rest
of
Heap

We have included a dangling pointer out of the rest of the heap here to emphasize that the location might
be referenced from within a heap cell, as well as from �. Because the association �� (� �� �� has been, in a
sense, retracted by deleting the association from the heap in the right conjunct, this frees �� to extend the
second heap with a different cons cell. The semantics of �� then ensures that � must be true when this
second heap is extended with a new binding of location to contents that makes �� (� �� �� true:�

�

�
��
�7

x

5

Rest
of
Heap
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So, the intuitive description in terms of updating follows from several steps in the semantics, which add up
to “update as deletion followed by extension”.

This idea can be used to formulate the weakest precondition for assignment statements �
	 �� $ and
�

 �� $ that alter the first or second component of a cons cell in the heap. Similarly, �� can be used to
formulate a weakest precondition form of the rule for 	��.

We conclude by remarking that the semantic structure of this model is incompatible with the formal
system of linear logic. To see this, consider that ��Æ� 
� � � � always holds in linear logic, using the
decomposition � � � � ���Æ� and the rule of Dereliction for �. However, here we have

�� (� 	� 
��� � �
� �� (� 	� 
� � �

because the antecedent can hold in a heap where � (� 	� 
 while the consequent cannot. This shows that
there can be no � which decomposes � � � into ���� � in this model.

We make this point not in criticism of linear logic but merely in support of our contention that there are
interesting and naturally occurring models in which both �� and � exist independently. It is natural to
want to have access to the structure of these models.

4.5 Logic Programming

BI gives rise to a notion of logic programming which builds in a sharing interpretation of BI’s connectives
[38, 41, 42, 37, 2].

Our underlying notion of logic programming is that introduced in [33, 32], based on the sequent calcu-
lus. Programs, ( , and goals, �, are modelled by the left- and right-hand sides, respectively, of sequents

( ����

read as, “Is there an instance of � which is a consequence of ( ?” 4

In BI, programs are bunches of formulæ, consisting of data, or “facts”, and procedures, made up of
“program clauses”. The bunched structure gives rise to a style of programming based on group member-
ship, or controlled access to resources. To see this, consider the bunch

�+��	�� +��
��� �+��	�� +��
�� 


Here, +��� means “� is a person”. The bunch structure shows that �	 and �
 belong to the same group and
that �	 and �	 belong to different groups. To say that two individuals may compete, we say simply

��� $ 
 +��� � +�$��� ���+�"���� $� �

which is to say that � and $ have access to each other only if they belong to different groups.
A logic programming language, BLP, based directly on BI has been implemented by Pablo Armelı́n

[2, 3], in the continuation-passing style, using the OCaml system [9]. The code for the example given
above, together with its Prolog equivalents, is discussed below.

To understand the semantics of logic programming, we start with the fragment of the logic for which
uniform proofs are complete for logical consequence. Reading proofs from the root upwards, i.e., using the
rules as reduction operators [24], uniform proof requires that right rules be applied whenever possible, so
that left rules are applied only when the right-hand side is atomic. Uniform proofs are said to be simple
just in case the implicational left rules are restricted to be essentially unary. For example, in first-order
intuitionistic logic, we get

� � ��"7�� ��"7�� � 8�"7��

�� � � � � 8
� 4�

with �, 8 atomic and ��"7�� � 8�"7�� (often, � � � is retained in the left-hand premiss).
In intuitionistic logic, simple uniform proofs, which are goal-directed and in which the non-determinism

is confined to the choice of implicational formula, are complete for hereditary Harrop sequents [33, 32].

4In general, � contains what Prolog calls “logical variables”, which are existentially quantified, and we seek substitution instances
of � which are consequences of � .
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Simple, uniform proofs amount to the analytic notion of resolution. In BI, the corresponding class of se-
quents may be defined. Bunched hereditary Harrop formulæ are given by the following grammar, in which

 denotes atoms (we simplify a bit, for brevity):

Definite formulæ 9 ��� 
 
 9 �9 
 � � 
 
 9 �9 
 ��� 


 ��
9 
 �����
9

Goal formulæ � ��� 
 
 � �� 
 9 � � 
 � �� 
 9�� � 
 � ��

 ��
� 
 �����
�

Roughly speaking, data is modelled by definite formulæ which are atomic (and conjunctions of atoms) and
procedures are modelled by implicational definite formulæ. The universal quantifiers are used to express
the generality of procedures and existentials are used to express what in Prolog are called “logical variables”
[25]. Here, for simplicity, we suppress all first-order and quantificational concerns.

A bunched hereditary Harrop sequent is a sequent( � �, where( is a bunch of definite formulæ, i.e., a
program, consisting of data and procedures. Such sequents are the basis of the bunched logic programming
language BLP.

A denotational semantics for BLP (in the absence of �) may be given within BI’s elementary resource
semantics by giving a reconstruction of the Kripke-style least fixed point semantics for intuitionistic logic
programming [14, 1, 32, 40, 2]. We sketch the key steps, for simplicity in a purely propositional setting, as
follows:

• Define a commutative monoid
) � �(� "� ����

of programs-as-worlds, in which ( is the set of hereditary Harrop bunches, " is � and its unit � is ��,
and ) � ( just in case, for some ( �, ) 
 ( � ( �.

This reading of programs as worlds treats the data and procedures as accessible resources. As we
have suggested, the bunching of the two conjunctions, � and �, allows the expression of access
restrictions between groups of data;

• Interpret goals � with respect to programs ( as follows:

������( � � $* 
 * � ( � �%�

where * denotes resolution proof (i.e., ����� � ��:��( ��������, where ( is the evident preorder
category of programs-as-worlds);

• An Herbrand interpretation (giving a meaning to a program in terms of the atomic formulæ it is able
to prove) is then obtained by taking the union of all possible atomic goals:

��( ��� +
�
�

��
���( ��

• A complete lattice , of Herbrand interpretations, ������ , is induced as follows:

– The least interpretation,3�, is given by

��( ����
� �, for all ( ;

– Let ��( �������
� ��( ����

� ��( ����
and ��( �������

� ��( ����
' ��( ����

;

– Let ��( ����
� ��( ����

just in case ��( ����
+ ��( ����

;

• We can now define an operator, � � , �� ,, on Herbrand interpretations which iteratively con-
structs a model corresponding to the execution of BLP programs. There are three cases in the iter-
ation, arising from the form of BI’s sequent calculus [41, 42, 2]. The proof-theoretic details of this
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system are beyond our scope here but the semantic sense of the three cases should be clear. The first
corresponds to instances of the Axiom rule required in BLP [2],

( ��� �
 �

( �
 


�����

where ( 
 ( ���� 
. The second corresponds to the �� ��# rule [2],

( � �
 �

( �
 

�� ��#�

where ( 
 ( �� ��� 
, and the third corresponds to the � ��# rule [2],

( � �
 � ( �� �
 �

( �
 

� ��#�

where ( 
 ( ��� �( ��� � 
�. Then T is defined as follows:

��( ��
���� � $* 
 * � ( �
 
 and ������ � (

��� 
� � %

'

$* 
 * � ( �
 
, ��� 
 � ( and ������ � (
� 
� � %

'

$* 
 * � ( �
 
, � � 
 � ( , ������ � (
� 
� � and

������ � (
�� 
� � %,

where 
� may be assumed to be BI’s elementary forcing relation, 5 with ������ determining the base
case, i.e., ������ provides the required assignment of atoms to worlds, as discussed in § 3.4;

• The operator T may readily be shown to be monotone and continuous so that, by Tarski’s fixed point
theorem, we get a semantics for programs ( via the least fixed point, ���3��, of �:

�
��3�� �

�
�	���

�
��3�� �

• It is a routine matter to show that we have determined a model of hereditary Harrop BI for which
the appropriate completeness property obtains: a hereditary Harrop sequent ( � � has a resolution
proof iff �����

������� ( 
� �.

The resource semantics of BLP arises in two ways here. Firstly, as we have seen, our reading of programs
as worlds treats the data and procedures in programs as accessible resources. Secondly, each of the strata
of ��( ��

������, i.e., each power of �, is composed of proofs which are representable as terms of the ��-
calculus to which the sharing interpretation described in [38, 42] applies directly. The details of BLP’s
deterministic operational semantics, and the resource semantics for the construction of proofs that provides,
are beyond the scope of this example; see [2].

Applications of BLP are concerned with controlled access to resources. Recall the example of compet-
ing individuals belonging to different groups introduced at the beginning of this section.

A complete BLP program to describe this set-up is given below. Here, T is 	, the unit of �, and ��� is
additive universal quantification.6

5A slight variation is that the semantics for additive implicational goals, � � �, should be given as �����
�
� � �� � � � iff

�����
�
� �� � ���� �� �, where ��� denotes the definite formula � with all top-level conjunctions, 	 or �, replaced (recursively) by

“;” or “,”, respectively. This “normal form” for programs is needed to allow the completeness of resolution proof.
6Note that predicate BI, in addition to the usual additive predication and quantification found in intuitionistic logic and linear

logic, also admits multiplicative predication and quantifiers [38, 41, 42]. This topic is beyond our present scope.
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(p(a1) ; p(a2)),
(p(b1) ; p(b2)),

[x,y]compete(x,y) *- p(x) * p(y) * T

Notice that the definition of compete has been slightly modified to take into account that there might be
more than two groups; but they may be disregarded.

An alternative solution would be to decorate each group with a multiplicative unit to signal that it can
be ignored. So we might have for example

(p(a1) ; p(a2) ; I),
(p(b1) ; p(b2) ; I),
(p(a5) ; p(a6) ; I)

However, the first approach is to be recommended since it doesn’t produce redundant solutions. Adding a
unit to each group allows the unit operation to be performed in different places, but without changing the
solution.

The following is an equivalent Prolog program for this problem. It uses tags to distinguish the groups:

p(a1,t1).
p(a2,t1).
p(b1,t2).
p(b2,t2).

compete(X,Y) :- p(X,T) , p(Y,U) , T\=U.

Thinking of political parties as an example of groups, sometimes they split into rival factions but each
faction in turn might want to keep its former allies. This situation might be represented by the bunch
�+��	�� +��
��� �+��	�� �+��
	�� +��

��� �+��
��� +��
����. Notice that �
	 competes with �	 and �
 but
also with �
� and �
�. If we call � and $ allies if they do not compete, then despite �	’s being an ally of
�
	, and also of �
�, �
	 and �
� are not allies. The modification of the program to reflect this state of
affairs is straightforward:

(p(a1) ; p(a2)),
(p(b1) ; (p(b21) ; p(b22)) , (p(b23) ; p(b24))),

[x,y]compete(x,y) *- p(x) * p(y) * T

Notice that the defining clause needed no modification.
To modify the Prolog program we could start by adding an extra tag to reflect the structure of the

problem like this

p(a1,t1,_).
p(a2,t1,_).
p(b1,t2,_).
p(b21,t2,t1).
p(b22,t2,t1).
p(b23,t2,t2).
p(b24,t2,t2).

compete(X,Y) :- p(X,T,_) , p(Y,U,_) , T\=U.
compete(X,Y) :- p(X,T,V) , p(Y,U,W) , T=U , V\=W.

and we should be aware that the whole program has had to be modified to account for the extra tag.
Alternatively, a more flexible implementation may be used, like using lists of tags as a second argument:

24



p(a1,[t1]).
p(a2,[t1]).
p(b1,[t2]).
p(b21,[t2,t1]).
p(b22,[t2,t1]).
p(b23,[t2,t2]).
p(b24,[t2,t2]).

compete(X,Y) :- p(X,U) , p(Y,S) , mismatch(U,S).
mismatch([H1|_] , [H2|_]) :- H1\=H2.
mismatch([H1|T1] , [H2|T2]) :- H1=H2 , mismatch(T1,T2).

Please note the complexity of this solution compared to the simplicity of the BLP version.
The bunch structure also helps to give fine control over the scope of predicates. In the example above,

we can think of a variety of ways in which constants can be predicated. For example �
 might be a special
kind of person. It would be possible to modify the program in the following way:

(p(a1) ; q(a2) ; [x]p(x) <- q(x)),
(p(b1) ; (p(b21) ; q(b22)) , (p(b23) ; p(b24))),
[x,y]compete(x,y) *- p(x) * p(y) * T

Now this program says that �
 is a ; but also that all ;s are +s. However, this relation between +s and ;s
holds only for the group formed by �	 and �
, i.e., is local to that world. Other ;s appearing in other places
in the program, for example �

, will not be picked up by the local implication, �. Note that this local
implication matches the “;” combining +��	� and ;��
�.

4.6 Money

We finish this section with an example based on cost; specifically, the use of money to purchase goods. We
do this to make a contrast with the well known resource reading of linear logic, exemplified by Girard’s
famous “Marlboro’s and Camels” example.

In this example, the resources are coins, which can be used to buy chocolates or candy from a vending
machine. (This, of course, is borrowed from C.A.R. Hoare.) A model for the discussion in this section is
given by the natural numbers, with addition as Æ and the usual interpretation of �.

A proposition is a statement about cost and the judgement of consequence is read as follows:

� � � � If I have enough money to make � true, then I have enough to make � true.

We posit meanings for the connectives as follows:

� � � � If I were to obtain enough money to make � true, then I should
also have enough to make � true;

� � � � The money I have got is enough to make � true and enough to make � true;
� � � � The money I have got is enough to make � true or to make � true;
��� � � If you were to give me enough to make � true then, combined with what I

have already got in my pocket, I should have enough to make � true; and
� � � � I can use part of my money to make � true and have enough

left over to make � true (and vice versa)


We hope the reader can take these informal descriptions in good spirit.
Given these readings the following judgements say that for one coin I can buy a candy and for two I

can buy a chocolate.

(A1) coin � candy, and

(A2) coin � coin � choc,
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where the basic propositions are

- coin : I have (at least) one coin in my pocket,

- choc : I have enough to buy a chocolate, and

- candy : I have enough to buy a candy.

Here we are regarding (A1) and (A2) as axioms, so coin �� choc: we indend that you must have at least
two coins to buy a choclate.

With this as background, we now move on to consider some judgements which illustrate the most
important, or unusual, consequences of the readings. Certainly, the most distinctive feature of BI is its joint
treatment of the two implications. As an example of how �� works, we certainly expect

- coin � coin�� choc

because if I have a coin in my pocket, and if you give me another, then I will have enough to buy a chocolate.
However,

- coin �� coin � choc

because a single coin is not enough to buy a chocolate.
It is here that the reader will detect similarity with Girard’s “Marlboro’s and Camels” reading of linear

logic [21]. However, the divergences are both more interesting than the similarities and illustrate how great
is the difference between BI and linear logic. First, and foremost, Girard’s reading is about “proofs-as-
actions” where, for example,

- choc: the (type of the) act of buying a chocolate.

In contrast, our reading is not about proofs. We do not regard a proposition as a resource and (so) a proof as
a way to manipulate resources. Rather, the reading is completely declarative: a proposition is a statement
about the world whose judgement of truth may involve consideration of resources.

Secondly, the difference is not merely one of emphasis but can be seen on the level of logical conse-
quence. For instance,

- coin�� choc �� coin � choc

is something we would expect, because coin�� choc is true when you have one coin in your pocket but
coin � choc is not. In linear logic, however, where � � � is rendered as ���Æ�, one gets

- coin�Æ choc � coin � choc �� �coin�Æ choc�

no matter what coin and choc are, because one can compose on the left with dereliction �� � �.
There are other examples in BI which violate the “use once” idea from linear logic (here � is the unit

of the multiplicative conjunction, �):

- � � �coin � �coin � choc���� choc, and

- � � coin�� ��coin � coin � choc� � choc�.

Now these judgements seem wrong from the point of view of linear logic because

- � �� �coin���coin�Æ choc���Æ choc, and

- � �� coin�Æ ���coin�Æ ��coin�Æ choc���Æ choc.

The first case would violate the idea that a linear function of type 
���Æ� must use one of its
input components but not both, and the second would violate the idea that a linear function cannot use its
argument twice. However, if one discards this perspective and thinks declaratively, using the reading of
formulæ advanced in this section, then the truth of BI’s judgements is straightforward.
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In BI, the proof of the last judgement, when viewed as an ��-term [38, 37, 42], does indeed use its
argument twice. Indeed, in [38] we advanced a resource reading of proofs to justify this judgement; the
declarative justification is much more immediate.

All of the true judgements we have claimed in this section, and non-judgements, are correct with respect
to the semantics of this paper. (That is, when we assume the (A1) and (A2) as axioms.) All told, what this
indicates is that BI and (intuitionistic) linear logic are incomparable extensions of intuitionistic logic, and
the basic substructural logic (sometimes called BCI logic or multiplicative intuitionistic linear logic [12]).
That is, when we consider formulæ which mix additives and multiplicatives, we have some judgements
that hold in BI but not linear logic; and some the other way around.

While the “proofs-as-actions” reading of linear logic is very appealing, and gives a consistent way
of understanding the semantics of the judgements above given by linear logic’s consequence relation, we
claim that the declarative resource reading gives a clear justification for the exact opposite position on the
corresponding judgements, the position taken by BI.

5 Topological Forcing Semantics

There are several mathematical ways to incorporate the kind of partiality found in the pointer model,
including taking a partial operation as primitive [19] and taking a ternary relation semantics as primitive.
For now, however, we show how to handle inconsistency without resorting to partiality in the semantics.
To this end, we observe some of the lessons learnt in the model theory of intuitionistic logic (see [28, 16]).
Briefly, Kripke models are a special form of topological model, in which the open sets are the downwards-
closed subsets of a pre-order: Topological models are, in turn, a special kind of Grothendieck sheaf model.
Pragmatically speaking, since topological ideas give rise to many interesting models of intuitionistic logic,
we would like to have access to these in the model theory of BI.

While it is possible (see recent work by Galmiche, Méry and Pym [19]) to give sound and complete
elementary models of BI with � using partial monoids, we believe the topological (sheaf-theoretic) meth-
ods which we adopt in this section, as in [38, 41, 37, 42], give an appropriate level of clarity and elegance
whilst retaining the total semantics.7 Moreover, whilst our first class of topological models, based on
sheaves, weakens our semantic basis in resources, this basis is recovered in our second class of topological
models, based on Grothendieck sheaves over pre-ordered monoids.

Returning to our theoretical development, we describe three classes of models based on topological
structures:

- Open topological monoids;

- Sheaves on open topological monoids;

- Grothendieck sheaves on preordered monoids.

Each of these classes of topological models yields (soundness and) completeness theorems for BI. The
unifying feature of these models in respect of completeness is their internalization of inconsistency via
their semantics for �.

We present the first two briefly, as stepping stones on our way to our final notion of model, for which
we present a detailed proof of soundness and completeness. Our main addition in each case will be to
include an appropriate continuity condition on the monoid operation in question.

5.1 Open Topological Monoids

A (commutative) topological monoid is a (commutative) monoid in the category Top of topological spaces
and continuous maps between them, i.e., a topological space - , with open sets .�- �, together with two
arrows, a tensor product � � - � - �� - and its unit � � 	 �� - such that the usual monoidal diagrams
commute [30].

7As we have seen in § 4.4, in which we discussed a model of BI based on pointers, partial monoids may be seen as a natural basis
for resource modelling. Note, however, that we show in § 5.4 the pointers model may be rendered as a Grothendieck sheaf-theoretic
model.
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We need to interpret a formula � �� as the tensor product,< � 1 of the interpretations, respectively<
and 1 , of � and �. The tensor product of two open sets is not necessarily open, however. Consequently,
we must require that the monoidal structure be defined by open maps, i.e., which map open sets to open
sets.

An open topological monoid is one in which the maps � and �, which define the monoidal structure are
open.

Lemma 8 (distributivity) Let �- � �� �� be a topological monoid. Then, for all open sets < , 1 �, � � /,
where / is some indexing set,

< � �
�
�

1�� �
�
�

�< � 1��


Proof 6 � < � �
�
� 1�� iff there exist � � < and $� � 1� , for some :, such that 6 � � � $� iff

6 �
�
��< � 1��. �

The interpretation of BI in an open topological monoid now follows exactly as for the interpretation of
intuitionistic logic in a topological space, i.e., with ����� � �, with the addition of the following:

��� � ��� � ����� � �����
��� �� � ��	�

and if ����� � < and ����� � 1 , then

����� ��� �
�
�
����

where each �� is such that �� � < + 1 . This interpretation is well-defined:

Lemma 9 (multiplicative function space) ����� ��� � ����� + �����.

Proof We have
�
�
���� � <� + 1 , so that �

�
�
���� � < + 1 , by distributivity. �

We can obtain soundness and completeness for these models just as for BI-algebras.

5.2 Sheaf-theoretic Models

An alternative way to give a topological semantics to BI, instead of the algebraic treatment in § 5.1, is to
give a forcing semantics in the category of sheaves over a topological monoid.

We start with a commutative open topological monoid, - � �- � �� ��. The symmetric monoidal
structure of a (commutative) topological monoid, - , gives rise, via Day’s construction of a tensor product
[11, 38], to a symmetric monoidal closed structure on the category ���- � of sheaves on - [42].

Definition 10 Let 4 be a set of propositional letters. Let �- � �� �� be an open topological monoid and let
)�4� denote the collection of BI propositions over a language 4 of propositional letters. A topological
Kripke BI-model is a triple

����- �� 
�� ����� �

where 
�+ .��� � )�4�, satisfying the conditions in Table 3 and ����� � )�4� ' ���- � is a partial
function from the BI propositions over 4 to the objects of ���- � such that:

Kripke monotonicity: If 1 + < , then, for each � � )�4�, < 
� � implies 1 
� �.

As before, wherever no confusion will arise, we shall refer to a model

����- �� 
�� ����� 

simply as - . �
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< 
� p iff ��p���<� �� �� for p � 4

< 
� � � � iff for some 1� 1 � � .�- �, < + 1 Æ 1 � and 1 
� � and 1 � 
� �

< 
� ��� � iff for all 1 � .�- �, 1 
� � implies < Æ 1 
� �

< 
� � � � iff < 
� � and < 
� �

< 
� � � � iff for some 1� 1 � � .�- � such that < � 1 ' 1 �,
1 
� � and 1 � 
� �

< 
� � � � iff for all 1 + < , 1 
� � implies 1 
� �

< 
� 	 for all < � .���

< 
� � iff < + �

< 
� � iff < � �

Table 3: Semantics in Sheaves

It is a routine matter to check that this definition is consistent with the usual presentation of the sheaf-
theoretic semantics of intuitionistic logic [31].

As usual, we write < 
�� � just in case < 
�� ��, where �� is the formula obtained from � by
replacing each “,” by � and each “;” by �. We then write � 
�� � just in case, for all < in - , if < 
�� �,
then < 
�� �. Finally, we write � 
� � just in case, for all - , � 
�� �.

Theorem 11 (soundness and completeness) � � � if and only if � 
� � �

We do not give detailed proofs of the soundness and completeness of BI for topological Kripke BI-
models, preferring to give these results to the more general setting of Grothendieck sheaves in § 5.3. The
details of these results can be found in [42], for both propositional BI and predicate BI [41]. However,
a few remarks will be informative. We sketch the construction of a term model, which is the basis of a
completeness proof [42]. We define a term topological Kripke BI-model, in which we suppress the routine
definition of �����, as follows:

- 
 - 
 is �7 ��, where� is the set of sets of consistent bunches and where �� is the evident equality
generated by derivability, i.e., if  and  � are sets of consistent bunches, then  �  � iff, for any
� �  , there exists �� �  � such that �� � ��� ;

- Open sets are elements of - closed under prime evaluation of bunches. The prime evaluation, 0� 1,
of a bunch � is constructed as follows:

- Close under consequences generated by the propositions in �. For example, closing � �
���� ��� �� under consequences requires evaluating the bunch to ����, and closing � �

��� � �� under consequences requires evaluating such a bunch to ���� ��. Let
�

� denote the
result of all such evaluations of a bunch � (see [42] for the details);

- Extend �, using “;”, with the bunch
�

� , to get 0� 1 � � �
�

� (and, obviously, we can treat
“;” as set union). The bunch 0� 1 is such that if � � �, then 0� 1 � �, if 0� 1 � �, then
0� 1 � 0� 1���, and has the disjunction property.

So, for any open set =, if  � = is a set of bunches and � �  , then 0� 1 �  .

Note that prime evaluation generates a set of bunches;
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- The monoid operation, Æ, is given by the consistent prime evaluation of the combination of bunches
using the comma, “,”: � �� �� 0� � � 1, where �� denotes isomorphism of labelled trees, so that

$��� 
 
 
 ��� % Æ $��� 
 
 
 ��	 % � $ �� ��� � �� ��� � 
 
 

�� ��� � �� ��� � 
 
 


... �
... � 
 
 
 % 2������

where ������ � $�� ��� 
 �� ��� � �%;

- The unit, � is given by $ �� %, where �� is the unit of “,”;

- �������� � $� 
 � is a proof of � � � %. Here we intend a restriction of � to normal proofs in BI’s
natural deduction system [38, 41, 42].

Notice that we remove the inconsistent bunches and that we will always be left with at least the empty
set. This property of the term model, together with the appropriate modificaton of the forcing clause for �,
yields completeness. To see this, consider the following example: Let p � 4. Then both p and p �� � are
consistent bunches but their monoidal combination is not. However, it is easy to see that

0 p Æ p�� �1 � $�p Æ p �� ����%2$�p Æ p �� ����%
� �

and � 
� �. How is this to be seen as being consistent with the elementary forcing semantics, in which
� is never forced ? The answer is simply that, in order for completeness to go through in the presence
of inconsistency, we must use a setting in which “never” is part of the model: the empty set fills exactly
this rôle: just as in the elementary monoid semantics, models inhabit functor categories Set�

��

but for
completeness with �, we refine this setting to that of sheaves (with the corresponding modification of the
forcing relation) on an � which is a topological space.

5.3 Grothendieck Sheaf-theoretic Models

In this section, we give a class of models which generalizes the ones we have so far described and in which
we give detailed proofs of soundness and completeness. We work with Grothendieck topologies [31], the
algebraic generalization of topological spaces, on preordered commutative monoids. This setting allows
us to recover the appealing simplicity of the elementary preordered commutative monoid semantics whilst
retaining the topological treatment of inconsistency, via the empty set, which gives rise to completeness in
the presence of �. The connection between the two topological formulations is the usual one [31].

Definition 12 (GTM) A Grothendieck Topological Monoid is a structure

� � ��� Æ� ���� >  �

where ��� Æ� ��� is a preordered commutative monoid and > is a map > � � � ?�?���� satisfying
the following:

1. Sieve: for any � � � and  � >���, “� �  ”, i.e., for any � � �  , � � ��;

2. Maximality: for any 	� such that 	� � 	, $	� % is in >�	�;

3. Stability: for any �, 	 � � and  � >��� such that � � 	, there exists  � � >�	� such that
“ �  �”: for any 	� �  �, there exists �� �  such that �� � 	�;

4. Transitivity: for any � � � ,  � >��� and $ �� � >���� %��
� ,
�
��
�  �� � >���;

5. Continuity: for any �, 	 � � and  � >��� “ Æ 	 � >�� Æ 	�”, i.e., $� � Æ 	 
 �� �  % �
>�� Æ 	�.

Such a > is usually called a Grothendieck topology.

30



� 
� p iff � � ��+��

� 
� 	 iff always

� 
� � � � iff � 
� � and � 
� �

� 
� � � � iff for any 	 � �, if 	 
� �, then 	 
� �

� 
� � � � iff there exists  � >��� such that for any �� �  ,
�� 
� � or �� 
� �

� 
� � iff � � >���

� 
� � iff there exists  � >��� such that for any �� �  , �� � �

� 
� � � � iff there exists  � >��� such that for any �� �  ,
there exist 	�� 	� � � such that
�� � 	� Æ 	�, 	� 
� � and 	� 
� �

� 
� ��� � iff for any 	, if 	 
� � then 	 Æ� 
� �

Table 4: Semantics in Grothendieck Sheaves

Definition 13 (GTI) Let � be a GTM and )�4� be the collection of BI propositions over a language 4
of propositional letters, a Grothendieck Topological Interpretation, GTI, is a function ����� � 4 � ?���
satisfying:

6. (K): for any ��	 � � such that 	 � �, 	 � ��p�� implies � � ��p��;

7. (Sh): for any � � � and  � >���, if, for all �� �  , �� � ��p��, then � � ��p��.

Definition 14 (GRM) A Grothendieck Resource Model, or GRM, is a triple 3 � ��� 
�� �–�  in which
� � ��� Æ� ���� >  is a GTM, �–� is a GTI and 
� is a forcing relation on � � )�4� satisfying the
conditions given in Table 4.

Definition 15 Let 3 be a GRM and �� be the formula obtained from a bunch � by replacing each “;” by
� and each “,” by � with association respecting the tree structure of �, a sequent � � � is said to be valid
in 3, written � 
�
 �, if and only if, for any world � � � , � 
� �� implies � 
� �. A sequent � � � is
valid, written � 
� �, iff, for any GRM 3, it is valid in 3.

The first two results give the well-definedness of the Grothendieck semantics.

Lemma 16 Given an interpretation ����� which makes (K) and (Sh) hold for atomic propositions, (K) holds
for the interpretation of any BI proposition �.

Proof For any ��	 � � such that 	 � � and � 
� �, we must show 	 
� �. The proof proceeds by
the induction on the structure of the proposition �. In most of the cases, the inductive step is immediate.
We give just those cases which differ from the corresponding ones in the preordered commutative monoid
semantics.

- � � � � �: since � 
� � � �, there exists  � � >��� such that for all �� �  �, �� 
� � or
�� 
� �. By the stability axiom, there exists  	 � >�	� such that for all 	� �  	, 	� � �� for some
�� �  �. Then, by the induction hypothesis, 	 � 
� � or 	� 
� � for any 	� �  	.
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- � � �: since � 
� �, � � >���. By the stability axiom, � � >�	�.

- � � � : since � 
� � , there exists  � � >��� such that �� � � for all �� �  �. By the stability
axiom, there is  	 � >�	� such that for any 	� �  	, 	� � �� for some �� �  �. Then, for any
	� �  	, 	� � �.

- � � � � �: since � 
� � � �, there exists  � � >��� such that for any �� �  �, there exist
��� � ��� such that �� � ��� Æ ��� , ��� 
� � and ��� 
� �. By the stability axiom, there exists
 	 � >�	� such that for any 	� �  	, 	� � �� for some �� �  �, from which 	� � ��� Æ ���

follows. Therefore, for any 	 � �  	, there exist �	� � �	� such that 	 � �	� Æ �	� , �	� 
� � and
�	� 
� �.

�

Lemma 17 Given an intepretation ����� which makes (K) and (Sh) hold for atomic propositions, (Sh) holds
for the interpretaion of any BI proposition �.

Proof For any � � � and  � >��� such that � � 
� � for all �� �  , we should show that � 
� �.
We use the induction on the structure of �.

- � � p: this case follows from the assumptions about �����.

- � � 	: for any 	 � � including the case that 	 � �, 	 
� �.

- � � � � �: for any �� �  , �� 
� � and �� 
� �. By induction hypothesis,� 
� � and � 
� �.

- � � � � �: for any 	 � � such that 	 
� �, by the stability axiom, there exists  	 � >�	� such
that for any 	� �  	, 	� � �� for some �� �  . Also, 	� � 	 by the sieve condition on  	. By
(K), as stated in Lemma 16, 	� 
� � � � and 	� 
� �, which implies 	� 
� �. By the induction
hypothesis, 	 
� �.

- � � � � �: for any �� �  , there exists  �� � >���� such that for any @ �  �� , @ 
� � or @ 
� �.
Let  � �

�
��
�  �� . Then,  � � >��� because of the transitivity axiom. Moreover, for any

@ �  �, @ 
� � or @ 
� �. Therefore,� 
� � � �.

- � � �: for any �� �  , �� 
� � and so � � >����. Since � �
�
��
� � is in >��� by the

transitivity axiom, � 
� �.

- � � � : for any �� �  , there exists  �� � >���� such that @ � � for any @ �  �� . Let
 � �

�
��
�  �� . Then  � � >��� by the transitivity axiom. Moreover, for any @ �  �, @ � �.

Therefore,� 
� � .

- � � � � �: for any �� �  , there exists  �� � >���� such that for any @ �  �� , there exist ��� ��
such that @ � �� Æ ��, �� 
� 
 and �� 
� �. Let  � �

�
��
�  �� . Then, by the transitivity axiom,

 � � >���. Moreover, for any @ �  �, there exist ��� �� such that @ � �� Æ ��, �� 
� � and
�� 
� �. Therefore,� 
� � � �.

- � � ��� �: for any 	 such that 	 
� �, let  	Æ� � $	 Æ �� 
 �� �  %. Then by the continuity
axiom,  	Æ� � >�	 Æ ��. For any �� �  , since �� 
� ��� �, 	 Æ �� 
� �. That is, for any
@ �  	Æ�, @ 
� �. By the induction hypothesis, 	 Æ� 
� �.

�

The class of models in GTMs includes the models in elementary preordered commutative monoids,
given in § 3.2, in the following sense:

Proposition 18 For any preordered commutative monoid ��� Æ� ����, let >��� � $ $� �% 
 �� � � %.
Then
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- ��� Æ� ���� >� satisfies all of the axioms in this section;

- (K) implies (Sh); and

- when an interpretation makes (K) hold for atomic propositions, the interpretations of � � ���� � �
�� � can be simplifed as follows:

� 
� � iff never
� 
� � � � iff � 
� � or � 
� �
� 
� � � � iff there exist 	�� 	� such that

� � 	� Æ 	�, 	� 
� � and 	� 
� �
� 
� � iff � � �

�

BI is sound and complete with respect to GRMs (we shall sometimes refer to these as “GTM models”).
For simplicity, we establish these results for GRMs with respect to BI’s Hilbert system, HBI, described in
§ 3.

Proposition 19 (soundness) For any BI propositions � and �, if � � �, then � 
� � in any GTM model.
�

Proof It is standard that 	, �, �, �, � induce a Heyting algebra . We show that � , � and �� induce a
residuated commutative monoid structure

- ��� �� induce a monotone commutative monoidal structure

	
�� � �� � � 
� � � �� � ��



� � �� � �� 
� �� � �� � �

�
� � � 
� �

�
� 
� � � �

�
� � � 
� � � �

� 
� � � 
� A
�

� � � 
� � � A

1. the proof of this case follows from the following lemma:

Lemma For any � � � and BI propositions ��, �� and ��, � 
� ��� � ��� � �� iff
there exists  � >��� such that for any �� �  , there exists ��� , ��� and ��� in �
such that �� � ���� Æ ���� Æ ��� , ��� 
� ��, ��� 
� �� and ��� 
� ��.

Suppose the above lemma holds. Then, by the associativity and commutativity of Æ, � 
�
�� � �� � � iff � 
� �� � �� ��. As will be shown in 5, this is equivalent to � 
� � � �� � ��.
The proof of the above lemma proceeds using axioms of a Grothendieck topology, as follows:

if: for any�� �  , since $��� Æ ���% � >���� Æ ���� by the maximality axiom, ��� Æ ��� 
�
�� � ��. Therefore,� 
� ��� � ��� � ��.

only if: since � 
� ��� � ��� � ��, there exists  � >��� such that for any �� �  , there exist
	�� and ��� such that �� � 	�� Æ ��� , 	�� 
� �� � �� and ��� 
� ��. We’ll show that
for any�� in  , there exists  �� such that for any 2 �  �� , there exist ��� � ��� satisfying
that 2 � ���� Æ ���� Æ ��� , ��� 
� � and ��� 
� �. Then, the conclusion follows from
 � �

�
��
�  �� , which is in >��� by the transitivity axiom. Let’s choose � � in  .

Since 	�� 
� �� � ��, there exists  	��
such that for any @ �  	��

, there exist �� and ��
satisfying that @ � �� Æ��, �� 
� �� and �� 
� ��. Let  	��Æ���

� $@Æ��� 
 @ �  	��
%.

Then, by the continuity of Æ,  	��Æ���
� >�	�� Æ ����. Since �� � 	�� Æ ��� , by the

stability axiom, there exists  �� � >���� such that for any 2 �  �� , 2 � @Æ ��� for some
@ �  	��

, which, by the monotonicity of Æ, implies that 2 � ��� Æ ��� Æ ��� .
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2. this case is handled while proving the case 	.

3. for any � � � such that � 
� � � � , there exists  � >��� such that for any � � �  , there
exist ��� � ��� in � such that �� � ��� Æ ��� , ��� 
� � and ��� 
� � . By the interpretation
of � , for any �� �  , there exists  ���

� >����� such that for any @ �  ���
, @ � �. By the

continuity of Æ, for any � � �  , $��� Æ @ 
 @ �  ���
% � >���� Æ ����. For any �� �  and

@ �  ���
, since ��� Æ @ � ��� Æ � � ��� and ��� 
� �, by (K), ��� Æ @ 
� �. Therefore, by

(Sh), ��� Æ ��� 
� �, and since �� � ��� Æ ��� , (K) implies that �� 
� � for all �� �  .

4. for any � � � such that � 
� �, since � � � Æ �, $� Æ �% � >���. Since $�% � >��� and
� � �, � 
� � . Therefore,� 
� � � � .

5. for any � � � such that � 
� � � �, there exists  � >��� such that for any � � �  , there
exist ��� � ��� in� such that ��� 
� �, ��� 
� � and�� � ��� Æ��� . Since Æ is commutative,
for any �� �  , �� � ��� Æ ��� . Therefore,� 
� � � �.

6. for any � � � such that � 
� � � �, there is  � >��� such that for any � � �  , there exist
��� � ��� in � such that ��� 
� �, ��� 
� � and �� � ��� Æ ��� . Since � 
� � and � 
� A, for
any �� �  , ��� 
� � and ��� 
� A. Therefore,� 
� � � A.

- ��� �� � induce a residuated (closed) structure.

� � � 
� �
	

� 
� ��� �

� 
� ��� �



� � � 
� �

- for any ��	 � � such that � 
� � and 	 
� �, by the maximality axiom, $� Æ 	% is in
>�� Æ 	�, from which it follows that � Æ 	 
� � � �. Since � � � 
� �, � Æ 	 
� �.

- for any � � � such that � 
� � � �, by the interpretation of �, there exists  � >��� such
that for any �� �  , there exist ��� and ��� in  such that �� � ��� Æ ��� , ��� 
� � and
��� 
� �. Since � 
� ��� �, for any �� �  , ��� 
� ��� �, from which it follows that
��� Æ ��� 
� �. By (K), �� 
� � for all �� �  . By (Sh), � 
� �.

�

Proposition 20 (completeness) For any two BI propositions, if � 
� � in all GTM models, then � � �.

Proof The proof proceeds in a similar way to that for the completeness of �����-free fragments, which
can be seen, essentially, as constructing a complete model and using Yoneda embedding. Here, in contrast
to the term model described for sheaves, disjunction is handled via the Grothendieck topology, > . The
treatment of additives is standard, following the treatment for intuitionistic logic [39]. We present the
completeness argument for intuitionistic as well as substructural connectives, in order to be self-contained.

Define a GTM as follows:

- � is an equivalent class of a proposition �, written ���, with respect to the relation given by prov-
ability;

- ��� � ��� iff � � �. It can be easily shown that the choice of � and � doesn’t matter;

- ��� Æ ��� � �� � ��. Also, it can be easily shown that the choice doesn’t matter;

- � � �� �;

- >����� is a collection of a finite (possibly empty) family $����� 
 
 
 � ��	�% such that ���� � ��� for all
� and ��� � ��� � 
 
 
 � �	�. Here again, the choice doesn’t matter.

We claim that the above entities do indeed satisfy all of the conditions required for a model. It is
straightforward to show that ����� Æ� �� is a preordered commutative monoid and that > satisfies the sieve
and maximality axioms. We deal with the other three conditions.
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- Stability: for any ���� ��� � � and $����%�
� � >����� such that ��� � ���, let’s consider the family
$������%�
�. Since for any & � 4, ������ � ��� and ��� � �

�
�
��������, the family $������%�
�

belongs to >�����. Moreover, ��� ��� � ���� for all & � 4, from which the other requirement for the
stability axiom follows.

- Transitivity: for any ��� � � , $����%�
� � >����� and $$���� �%�
��
� >������%�
�, let  �

$���� �%�
���
��
. From the definition of > , for any & � 4 and B � C �, ���� � � ���� � ���. Again, from

the definition of > , ��� � �
�
�
� ��� � �

�
�
�

�
�
��

��� �, which implies ��� � �
�
�
���
��

��� �.
Therefore,  is in >�����.

- Continuity: for any ���� ��� � � and $����%�
� � >�����, let’s consider the family $��� � ��%�
�.
Then ��� � �� � �� � �� for any & � 4 and �� � �� � ��

�
�
� ��� � �� � �

�
�
���� � ���.

Let the interpretation ����� of atomic propositions be given by ��p�� � $��� 
 � � p%. Notice that ����� satisfies
(K) and (Sh). The resulting model has the following property:

For any two propositions �� and ��, ���� 
� �� iff �� � ��.

Before considering why the above property holds, notice that the completeness result follows from it in the
usual way. We show the above property by the induction on the structure of � �.

- �� � p: this case follows from the definition of �����.

- �� � 	: both ���� 
� 	 and �� � 	 always hold.

- �� � � � �:
���� 
� � � � iff ���� 
� � and ���� 
� � iff (by the induction hypothesis) �� � � and �� � � iff
�� � � � �.

- �� � � � �:

if: for any ���� such that ���� � ���� and ���� 
� �, �� � � by the induction hypothesis, From
the definition of �, �� � ��. Therefore, �� � � � � and �� � �. Again, by the induction
hypothesis, ���� 
� �;

only if: since �� � � � �, ��� � �� 
� � by the induction hypothesis. Since ��� � �� � ����,
��� � �� 
� �. Again, by the induction hypothesis, �� � � � �. Therefore, �� � � � �.

- �� � � � �:

if: consider  � $��� � ��� ��� � ��%. Then, ��� � �� � ���� and ��� � �� � ���� and ���� �
��� � �� � ��� � ���� � �� � ��� � ���. Therefore,  � >������. Moreover, by the induction
hypothesis, ��� � �� 
� � and ��� � �� 
� �. Thus, ���� 
� � � �;

only if: since ���� 
� � � �, there exist  � >������ such that for any ���� �  , ���� 
� � or ���� 
� �.
By induction hypothesis, for any � � �  , �� � � or �� � �, which implies �� � � � �.�
��
� �

� � � � � follows from this. Since ���� � �
�
��
� �

��, �� � � � �.

- �� � �: ���� 
� � iff � � >������ iff ���� � ��� iff �� � �. This case is the counterpart to the
� 
� � case in the sheaf-theoretic semantics discussed in § 5.2.

- �� � � :

if: $����% � >������ and ���� � � � �� � because �� � � . Therefore, ���� 
� � ;

only if: since ���� 
� � , there exists $����%�
� � >������ such that ���� � � � �� � for any & � 4, which
implies

�
�
� �� � � . Since ���� � �

�
�
� ���, �� �

�
�
� ��. Therefore, �� � � .

- �� � � � �:

if: $����% � >������ and ���� � ��� Æ ���. Moreover, by the induction hypothesis, ��� 
� � and
��� 
� �. Therefore, ���� 
� � � �;
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only if: since ���� 
� � � �, there exists $����%�
� � >������ such that for any & � 4, there exist
�D��� �E�� such that ���� � �D��Æ �E��, �D�� 
� � and �E�� 
� �. By the induction hypothesis, D� � �
and E� � � for any & � 4. For any & � 4, since ���� � �D� �E��, �� � ���. Since �� �

�
�
� ��,

�� � � � �.

- �� � ��� �:

if: for any ���� such that ���� 
� �, by induction hypothesis, �� � �. Therefore, �� � �� � �.
Again, by the induction hypothesis, ��� � ��� 
� �. Equivalently, ���� Æ ���� 
� �;

only if: by the induction hypothesis, ��� 
� �. Since ���� 
� ��� �, ���� Æ ��� 
� �. By the induction
hypothesis again, �� � � � �. Therefore, �� � ��� �.

�

We conclude this part with a simple example, a specific counter-model to the entailment,

��p �� �� � �� � ��q �� �� � �� 
� �p � q�� �� � ��

used in Proposition 6. We define a preordered monoid � � ��� Æ���, where

- the carrier set � � $ �� ���%;

- the order is � � � � �;

- the multiplication is

Æ e a �

e e a �
a a � �
� � � �

- the Grothendieck topology is

>��� � $$�%� �%� >��� � $$�%%� >��� � $$�%%

Define an interpretation and forcing relation as follows:

- � 
� p iff � � � or � � �;

- � 
� q iff � � � or � � �.

- � 
� � iff � � �.

Now, � 
� �p�� �� � � iff for all 	 � � such that � �� � there is an & such that & 
� p and 	 Æ & �� �
iff there exists & such that & 
� p and & �� �. Since � is such an &, we have � 
� �p �� �� � �. However,
� 
� �p � q�� �� � � iff for any 	 � � such that 	 �� � there is an & such that & 
� p � q and & Æ 	 �� � iff
there are &, &� such that & 
� p, &� 
� q and & Æ &� �� � which cannot be so because, for any & and & �, if & 
� p
and &� 
� q, then & Æ &� � �. Therefore, � �
� �p � q�� �� � �

Therefore, � 
� ��p �� �� � �� � ��q �� �� � �� but � �
� ��p � q�� �� � �� in this model.

5.4 The Pointers Model as a Grothendieck Sheaf

In § 4.4, we presented a model where the combining operation Æ is a partial function. As promised in § 4.4,
we conclude our treatment of resource semantics by showing that show that this model can be understood
as a Grothendieck sheaf, i.e., within the model-theoretic framework based on total monoids.

Let 3� be the set of heaps, extended with a new least element, �. We can define an operation Æ in
which ! Æ !� is the union of !� !� � 3 if they are disjoint and � otherwise. Also, Æ is strict in both
arguments and the unit is again the empty heap. The ordering we take is the flat one, in which � is least
and all other elements are incomparable.
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We can define a Grothendieck simple topology on 3�, by setting

>��� � $$�%� �%
>��� � $$�%% if � �� �

The points-to relation is extended so that � always forces it. Notice that since >��� contains �, it follows
from the semantic clauses that � 
� � always holds.

The connection between the pointer model and this sheaf presentation can then be stated as follows:

For every ! � 3 , ! 
� � in the sheaf model just given iff ! 
� � in the pointer model.

This does not mention � but, because of the way it is treated in the topology, the two models do indeed
agree on logical consequence:

� 
� � in the sheaf model just given iff � 
� � in the pointer model.

Finally, the pointer model of Reynolds [46] can also be seen as a Grothendieck sheaf model. The
underlying set of worlds is 3�, as above, but this time the ordering on worlds is the one in which ! � ! � if
the graph of ! is a supergraph of the graph of ! �. This is an intuitionistic model, corresponding to Reynolds’
intuitionistic treatment of pointers, whereas the previous one provides a model of Boolean BI.

6 Towards a Theory of Resource

We should like to conclude by being clear about what this paper does and does not accomplish.
Firstly, starting from a notion of resource (de)composition, we have shown how a natural semantics of

BI’s formulæ may be obtained, and how a number of naturally occurring examples fit well with it. Further,
we have shown completeness properties of the semantics. We admit that our most general notion of model,
the Grothendieck semantics, is difficult to motivate exclusively in terms of resources but it does allow
for a wider range of models, and has paved the way for new results [19]. In particular, [19] shows the
completeness of the simpler partial monoid semantics, which we would argue can be regarded as a basic
model of (de)composition.

Secondly, we do not claim to have constructed a good general theory of resource. Whilst the theory we
have presented is certainly general, it is not very specific to resource: our concrete computational models
have a much richer resource-specific structure which is not captured by our general semantics. In a similar
vein, we do not claim to have established “the logic of resources”. There is currently no such logic: rather,
there are different logics — including BI, linear logic, various logics used in AI — which are “resource
sensitive” in that they allow for models or interpretations in which a notion of resource may be seen. None
of them, however, provides an all-encompassing account.

As we have indicated in Section 4, to obtain a richer theory would require a thorough treatment of the
dynamics of processes, their interaction with resources, and (say) modal logics expressing the properties
of interacting processes and resources.
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