
A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES

GABRIELLE ANDERSON AND DAVID PYM

UNIVERSITY COLLEGE LONDON

Abstract. Mathematical modelling and simulation modelling are fundamental tools of engi-

neering, science, and social sciences such as economics, and provide decision-support tools in

management. Mathematical models are essentially deployed at all scales, all levels of complex-
ity, and all levels of abstraction. Models are often required to be executable, as a simulation,

on a computer. We present some contributions to the process-theoretic and logical founda-
tions of discrete-event modelling with resources and processes. Building on previous work in

resource semantics, process calculus, and modal logic, we describe a process calculus with an

explicit representation of resources in which processes and resources co-evolve. The calculus is
closely connected to a substructural modal logic that may be used as a specification language

for properties of models. In contrast to earlier work, we formulate the resource semantics, and

its relationship with process calculus, in such a way that we obtain soundness and complete-
ness of bisimulation with respect to logical equivalence for the naturally full range of logical

connectives and modalities. We give a range of examples of the use of the process combinators

and logical structure to describe system structure and behaviour.

Keywords: Modal logic; Process algebra; Bunched logic; Resource semantics

1. Introduction

Mathematical modelling and simulation modelling are fundamental tools of engineering, sci-
ence, and social sciences such as economics, and provide decision-support tools in management.
Mathematical models are essentially deployed at all scales, all levels of complexity, and all levels
of abstraction.

This paper contributes to the logical and mathematical foundations of discrete-event modelling
of distributed systems. The classical theory of distributed systems (as described, for example,
in [15]) provides a rigorous conceptual basis for this work, which can be conveniently abstracted
to describe systems in terms of collections of interconnected locations, at which are situated
resources, relative to which processes execute — consuming, creating, moving, and otherwise
manipulating resources as they evolve — and so deliver a system’s services. Distributed systems,
as described here, exist not in isolation but within environments with which they interact. A
system’s environment is both a source of events, that are incident upon the system, and the
recipient of events caused by the execution of the system’s processes.

Modelling is a process of making a precise description — that is, a model — of a system in order
to explore rigorously its properties. The process of constructing a model is described as a cycle
of observation, model definition, analysis of properties, and exploration of implied consequences
for the system, leading to further observation, and so on. This cycle of construction embodies
the process by which a model is judged to be a sound, or valid, representation of the system,
capturing just those aspects of the system’s structure and dynamics that are determined to be
relevant to the questions that model is required to address.

In discrete-event models, the (model of the) system evolves in discrete steps. In traditional
applied mathematics, these models of dynamical systems are typically described by families
of difference equations that describe the system’s local evolution from on step to the next. An

1

2 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

evolution (or flow) operator is derived that completely describes the behaviour of the system. For
large and/or complex systems, models of this kind are rarely susceptible to exact solution and,
in such situations, computational models, through techniques such as Monte Carlo simulations,
provide alternative methods of analysis. These stochastic aspects of system modelling, though
an essential part of the modelling approach, are not the subject of this paper. Rather, we are
concerned here with some theoretical properties of the structural theory of models.

Mathematically, the components of distributed systems are modelled using various algebraic
structures for the structural components (location, resource, and process) and probability dis-
tributions to represent stochastic interactions with the environment. For the remainder of this
paper, we are concerned just with the structural aspects.

In [11, 13, 14], the work upon which this paper builds, the following approach is taken:

‚ Location is modelled using structures that satisfy some basic requirements of there being
sets of connected places having some substitution properties. Leading examples are
directed graphs and topological constructions [11, 14];

‚ Resource is modelled by structures that satisfy the requirements that it should be possible
both to combine and to compare resource elements. These requirements are captured by
preordered commutative monoids, subject to a functoriality condition that relates the
monoidal composition and the preorder — called resource monoids [11, 12, 14] — and
leading examples are given by the monoid of natural numbers with addition (with unit 0)
ordered by less-than-or-equals, computer memory (as in separation logic), and Petri nets
[11, 12, 14];

‚ Process is modelled using an algebra of proceses that is closely related to Milner’s SCCS
[27]. The key point in the formulation in [11, 12, 14] is that resources and processes
co-evolve.

Mathematically, this set-up leads to an operational judgement of the form

L,R,E
a
ÝÑ L1, R1, E1 ,

which is read as ‘the action a, with resources R at location L, evolves the process E to be the
process E1, able to evolve with resources R1 at location L1’.

The judgement is defined by a structural operational semantics for action prefix, sum, (syn-
chronous) product, and so on. For example,

L,R, a : E
a
ÝÑ L1, R1, E

Act,

where the action a — with access to resources R at location L — occurs, evolving the process
a : E to E, which is then further able to evolve starting at location L1 with resources R1,

R,Ei
a
ÝÑ R1, E1i

R,E1 ` E2
a
ÝÑ R1, E1i

i P t1, 2u Sum,

and

L,R1, E1
a1
ÝÑ L1, R11, E

1
1 L,R2, E2

a2
ÝÑ L1, R12, E

1
2

L,R1 ˝R2, E1 ˆ E2
a1a2
ÝÝÝÑ L1, R11 ˝R

1
2, E

1
1 ˆ E

1
2

Prod,

where ˝ is the monoidal composition of resources, ˆ is synchronous concurrent product of pro-
cesses, and a1a2 denotes a monoidal product of actions.

More generally, each of the premisses in the Prod rule may be located separately — starting
at L1 and L2, say, respectively — with the conclusion starting at a product of L1 and L2. Note
our use, as in SCCS [27], of a synchronous product. From the modelling perspective, synchrony
is preferred over asynchrony for its greater generality [27, 35].

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 3

In subsequent sections of this paper, we neglect location: whilst it is conceptually significant
and convenient in modelling, mathematically, we can essentially code it within resource and
neglecting it simplifies the subsequent technical development. The calculus sketched above is
known as SCRP (for synchronous calculus of resources and processes) and is developed fully in
[11, 12, 14].

SCRP provides the semantic framework underpinning the modelling language Gnosis [13,
14, 18]. Gnosis and closely related tools (all owing much to Birtwistle’s Demos [7]) have been
employed in a range of industrial-strength applied modelling projects undertaken by Hewlett–
Packard and others (e.g., [18, 22, 2, 3, 4, 9]). The modelling methodology has been developed
further in, for example, [10].

This mathematical formulation supports a modal logic of actions for assertions about the state
of the system (model), with the judgement of the form

L,R,E (φ,

read as ‘the state L,R,E has property φ’. The connection between the logic and the operational
semantics derives from the action modalities, xay and ras, with the satisfaction clause

L,R,E (xayφ iff there exist L1, R1, E1 such that

L,R,E
a
ÝÑ L1, R1, E1 and

L1, R1, E1 (φ,

for xay and a similar one for ras.
For CCS and SCCS, for example, this logic is called Hennessy–Milner logic [20, 28] and,

just as in [11, 12, 14], we adopt the name for the logic developed here. The key characterizing
result here, which we can usefully describe as the Hennessy–Milner completeness theorem, relates
logical equivalence and process bisimulation. Informally, one obtains ideally (as for, say, CCS) a
theorem of the following form:

For all location-resource-processes, L1, R1, E1 is bisimilar to L2, R2, E2 if and
only if, for all logical formulae φ, L1, R1, E1 (φ if and only if L2, R2, E2 (φ.

For the resource–process calculus and associated modal logic presented in [11, 12, 14], the
strength of the Hennessy–Milner completeness theorem is limited.

The reverse direction — that the logical equivalence of states implies their bisimulation equiva-
lence — is obtained in full generality. But the forward direction — that bisimulation equivalence
of resource-processes implies their logical equivalence — holds only for fragments of the logic
that exclude the multiplicative modality xayν with satisfaction definition,

L,R,E (xayνφ iff there exist L1, R1, E1 and S, S’ such that

L,R ˝ S,E
a
ÝÑ L1, R1 ˝ S1, E1 and

L1, R1 ˝ S1, E1 (φ,

where ˝ is the monoidal resource composition, its counterpart rasν , and the multiplicative im-
plication, ´́˚. This situation is both theoretically unsatisfactory and a limitation in practical
reasoning about system models.

In this paper, we develop fully a formulation of a calculus of resources and processes, together
with its associated modal logic, that solves this problem; that is we obtain the result that

For all resource-process pairs, R1, E1 „ R2, E2 (that is, R1, E1 is bisimilar to
R2, E2) if and only if R1, E1 ”MBI R2, E2 (that is, for all logical formulae φ,
R1, E1 (φ if and only if R2, E2 (φ).

In Section 2, we set up a calculus of resources and processes. We introduce the notion of
bunched resources, which represents a conceptual departure from the simply motivated resource
semantics employed in [11] and elsewhere, sketched above. Bunching of resources, just as with

4 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

contexts in BI [30, 32, 17], employs two conjunctive combinators, which we denote ‘ and b,
giving sharing and separating combinations of resources, respectively. The operational semantics
of the calculus is (in part) determined by the way that actions modify resources. To maintain
various properties concerning this modification relationship, we also provide a differenct structure
on actions. In particular, one important property is that the 1 action ‘modifies’ all resources to
themselves (it acts as a unit). Note that we do not, however, work with the monoid equations on
actions. Technically, the improved theoretical relationship between the process calculus and the
logic derives from the combinatorial match between the structure of processes and the structure
of resources, which we use to establish the Hennessy–Milner completeness theorem. Were we
to make use of the monoid equations on actions, we would not be able to maintain this close
link between the structure of the resources and the processes. Conceptually, it would seem to be
suggested that the capturing of sharing and separation within the logic by co-existing additive and
multiplicative connectives should be reflected in the underlying resource semantics. We would
conjecture, perhaps rather obviously, that an ordering on resources may need to be reintroduced
in order to set up intuitionistic variants of the logical theory (here we work with a classical
logic). We explore various examples, including several classic examples surrounding concurrent
interaction, to demonstrate how our resource semantics works. With that grounding, we define a
notion of bisimulation, and prove that various operators, including concurrent composition, are
a congruence with respect to the bisimulation relation.

In Section 3, we provide an embedding of previous work [11, 12, 14]. We describe in more
detail the relevant calculi. We provide an example embedding, and prove that our work can
simulate any transition structure definable in the previous work.

In Section 4, we describe how to establish the standard algebraic properties of process calculi
in our formalization. In many process calculi, the monoid equations on actions are used to
establish these properties, for the standard notion of behavioural equivalence (bisimulation). As
we cannot use the monoid equations, we take a different approach. To regain the algebraic
properties we modify the notion of bisimulation via the introduction of an equivalence over
actions, which functions in a similar manner to the monoid equations on actions. Note that the
fact that we impose the use of the equivalence relation in the notion of bisimulation does not
mean we must impose its use in the notion of actions modifying resources, and that two bisimilar
resource-process pairs do not necessarily perform exactly the same actions, but that they perform
equivalent actions. Hence, Bisimilar pairs perform distinct (but equivalent) transitions that lead
to bisimilar states. This is possible as, unlike in [11, 12, 14], the definition of bisimulation permits
bisimilar resource-process pairs to have different resource components. Hence the distinct (but
equivalent) actions can modify the resource components of the two pairs differently, and have
the resulting pairs remain in the bisimulation relation.

In Section 5, we introduce a modal logic MBI — borrowing the name from the logic with
the same formulæ taken in [11, 12, 14] — of resources and processes that provides an assertion
language for the properties of resource–process states. This logic, presented in here in its classical
form — that is, as in Boolean BI [25], in which the additives are classical — is defined in relation
to resource–process states just as Hennessy–Milner logic is defined in relation to CCS states,
and the previously established modal logic of [11, 14] is defined in relation to SCRP states. We
establish the Hennessy–Milner completeness theorem for MBI in full generality.

The key tract of related work is based around O’Hearn’s concurrent separation logic [29].
These ideas have been developed in a range of directions, including the provision of a semantics
for Hoare’s Communicating Sequential Processes (CSP) [24] — a calculus of processes that shares
some combinatorial properties with our calculus and its relatives — using the structures that
support concurrent separation logic. We discuss, in Section 6, how work along these lines might

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 5

inform an analysis of the relationship between concurrent separation logic and the resource–
process semantics considered here. A summary of this work has been presented in [1].

2. A calculus of bunched resources and processes

We present a family of systems, known collectively as CBRP, along with their key technical
properties.

Compared to the set-up employed in [11, 14], we introduce additional structure into resources,
which permits us to consider concurrent composition of, and non-deterministic choice between,
resources and their transitions. We describe how actions modify resources, and how such modifi-
cations must behave with respect to the structure of the resources. We define a notion of hiding
resources and actions that generalizes the approach used in [11, 14] (which itself generalizes the
notion of restriction).

We explore various examples, including several classic examples surrounding concurrent inter-
action [14]. In one example, we describe how to encode weak memory consistency [36] through
the use of non-determinism within the resource component, an example which cannot be encoded
within existing resource–process calculi.

We define processes and an operational semantics for resource–process pairs. We introduce
the standard notion of bisimulation for such a transition system, and prove various properties of
the bisimulation relation; in particular, that the key operators of the resource–process pairs are
a congruence with respect to the bisimulation relation.

We conclude by establishing some expansion theorem results that are used in an embedding
of SCRP calculi [11, 14] into our calculus (Section 3).

The set-up of these calculi assumes the provision of certain additional data pertaining to
some semantic structure pAct,Res,R, µ,∆,Hq over which we work and which we define in the
development below. Thus we should properly refer to the calculus as pAct,Res,R, µ,∆,Hq-
CBRP. In this paper, however, we suppress the prefix as, at every stage, we work with a fixed
such structure.

Just as in the systems described in [11, 14], summarized briefly in the introduction, the
operational semantics of a CBRP system defines a transition system in which resources and
process co-evolve. The primary judgement in our set-up will be of the form

R,E
a
ÝÑ R1, E1 ,

which is read as ‘the process E, with available resources R, evolves by the action a to become
the process E1 with available resources R1’. Alternatively, ‘the resource–process R,E evolves by
the action a to become the resource–process R1, E1’. As such evolutions occur, not only does
the structure of the process components evolve, but also resources are manipulated: consumed,
created, and distributed around the system. In this paper, we shall often work with partial
functions. We use the standard notations R Ó and R Ò to mean that an expression R is,
respectively, defined or undefined.

In [11, 14], the manner in which processes are distributed around a system is explicitly repre-
sented — through the concurrent product, non-deterministic choice, and so on, of processes —
but the manner in which the resources used by the processes are distributed is not. There, the
distribution of resources to processes is performed non-deterministically, in the operational se-
mantics rule for concurrent product of processes. This leads the operator for concurrent product
to not be a congruence over the standard notion of bisimulation, in [11, 14]. In this paper, we
represent the distribution of resources around a system through the use of a ‘bunching’ structure
on resources (described formally below).

We use sets of atomic resources, Res; these are similar to the atomic resource elements
considered in [11, 14], where they are required to form monoidal structures, and correspond to

6 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

the basic resource infrastructure of a system; they denote, for example, CPU time, memory,
vehicles, or money. The elements of a set Res of atomic resource are denoted, r, s, etc.. There is
a distinguished element, e, denoting the ‘empty’ resource. Note that the set of simple resources
is one of the parameters to the calculus.

Following [33, 30, 11, 12, 14], and other works in the relevant logic tradition, bunches are trees
with leaves labelled by simple resources, and internal nodes labelled by either ‘ or b. Let R, S,
etc. denote bunches of resources. A node labelled by ‘ denotes a (portion of a) system where
one or the other of the sub-bunches of resources can be used by a process, but not both. For
example, an agent leaving an underground station can choose to exit using either the stairs or the
escalator, but cannot do both (at the same time). A node labelled by b denotes a (portion of a)
system where the sub-branches of resources are allocated to the subprocesses of a concurrent
product process. For example an example of this set up, consider two stream processors, one
with a stream of three objects to process, the other with a steam of two other objects to process.

We now define bunched resources.

Definition 1 (Bunched resources). Let Res be a set of atomic resources, with a distinguished
resource e (known as the ‘empty resource’), and let r P Res. Then the set Ω of bunched resources
(over atomic resources Res) is formed according to the following grammar:

R ::“ r | R‘R | RbR.

�

We use “ to denote syntactic equality of resource bunches. Note that a set of atomic resources
is one of the parameters to the calculus.

Definition 2 (Resource models). Let Ω be the set of bunched resources formed over a set
of atomic resources Res, with ‘empty’ resource e. Then a resource model R is a set R Ď Ω
that includes the atomic (that is, Res Ď R), and is closed under the following, for all bunched
resources R,R1, R2, R3 P R:

‚ If the bunch R1 bR2 is in R, then the bunches R1 and R2 are in R;
‚ If the bunch R1 ‘R2 is in R, then the bunches R1 and R2 are in R;
‚ The bunch R1 ‘R2 is in R if and only if the bunch R2 ‘R1 is in R;
‚ The bunch R1 bR2 is in R if and only if the bunch R2 bR1 is in R;
‚ The bunch R1 b pR2 bR3q is in R if and only if the bunch pR1 bR2q bR3 is in R;
‚ The bunch R1 ‘ pR2 ‘R3q is in R if and only if the bunch pR1 ‘R2q ‘R3 is in R;
‚ The bunch R1 b pR2 ‘R3q is in R if and only if the bunches R1 bR2 and R1 bR3 are

in R;
‚ The bunches R‘R, R‘ e, and Rb e are in R.

�

In the sequel, for brevity, when we write R b S, we assume that it is defined in the resource
model that defines R and S. Note that a resource model is one of the parameters to the calculus.

Example 3 (Semaphore resource model). Consider a contested resource: a semaphore. Only one
process should be able to (concurrently) access the semaphore at any given time. We model this
scenario as follows. Let the set of atomic resources Res “ ts, eu consist of the element s, which
denotes the semaphore, and the element e, which denotes the empty resource. Let the resource
model R be the least set such that Definition 2 holds. Then, we have that s, s b e, s ‘ s P R,
but do not have that sb s P R. �

Actions correspond to the events of a system. In process algebra, the set of actions is typically
assumed to be a semi-group, or a commutative monoid, or a similar algebraic structure [27].

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 7

In resource-process algebra as set up in [11, 14], however, actions are used to determine how
resources evolve. This necessitates a relationship between the monoidal product of actions and
the monoidal structure of resources. In order to obtain an analogous relationship in our setting
(formally stated in Definition 5), given that the structure that we use for resources is bunching,
we must weaken the structure on actions.

Definition 4 (Actions). Let Act be a set of atomic actions and let α P Act. Then the set A
of actions (over atomic actions Act) is formed according to the following grammar:

a ::“ 1 | α | a ¨ a.

�

Note that we do not require that 1 be a unit for ¨, so that A is not a monoid. We use “ to
denote syntactic equality of actions. Note also that the set of atomic actions Act is one of the
parameters to the calculus.

In many process algebras, such as SCCS and SCRP, the commutative monoid structure of
actions is used to prove various algebraic properties of states. Here, the actions do not form a
(commutative) monoid. In this paper, we first develop a notion of bisimulation for which resource-
process concurrent composition can be proved to be a congruence with respect to bisimulation,
but for which the standard algebraic properties do not hold. We do this to demonstrate how the
bunched resource structure is used in the proof of congruence. Then, we extend the notion of
bisimulation in a way that does not interfere with our ability to prove congruence, but enables
us to regain the algebraic properties of states (Section 4).

Definition 5 (Modification functions). A partial function µ : A ˆ R á R is a modification
function if, for all bunched resources R,S P R and actions a, b P Act:

‚ If µpa,Rq, µpb, Sq, RbS P R, then µpa,Rqbµpb, Sq, µpa¨b, RbSq P R and µpa¨b, RbSq “
µpa,Rq b µpb, Sq;

‚ If µpa,Rq “ R1, µpb, Sq “ S1, and R1 b S1 P R, then Rb S P R;
‚ µp1, Rq “ R.

�

Note that the action 1 is a unit for µ’s action on resources. Note also that a modification
function is one of the parameters to the calculus.

Example 6 (Concurrent counters). We model a series of counters, each of which can be incre-
mented independently. Let the set of atomic resources Res “ N be the set of natural numbers,
and let 0 be the empty resource. Let the resource model R be the least set such that, for all
natural numbers m,n P N, m b n P R, and Definition 2 holds. Let the set of atomic actions
Act “ tiu consist of a single action i, which denotes incrementation. Let the modification
function µ : A ˆ R á R be the least function (under set inclusion of the domain) such that
µpi, nq “ n ` 1, and Definition 5 holds. Consider a ‘tuple’ of counters, 2 b 4. The follow-
ing properties of the modification function hold. The action i ¨ 1 increments the left counter:
µpi ¨ 1, 2 b 4q “ 3 b 4, as µpi, 2q “ 3 and µp1, 4q “ 4. The action 1 ¨ i increments the right
counter: µp1 ¨ i, 2b4q “ 2b5, as µp1, 2q “ 2 and µpi, 4q “ 5. Note that the modification function
is undefined for action i and resource bunch 2 b 4. This is as we only define the modification
function for action i on atomic resources n P N, and Definition 5 only extends this to bunched
resources when the ¨ structure of the actions can be matched with the b structure of the bunched
resources. �

A related approach has been explored by Hennessy in [19]. There, resources are allocated
to specific processes, and actions modify them functionally. These resources are in some cost

8 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

domain, which has a minimum element and notions of addition and subtraction. There is no
notion of choice between resources, or of richer structures than n resources in parallel (for n
processes).

Modification functions are homomorphisms with respect to the concurrent product structure
of resource bunches. As a result, we cannot use the modification function to ‘move’ resources
from one side of a concurrent product to another (such a move corresponds to changing the
process to which the resources are allocated, for example, passing an object from producer to
consumer). Using the modification function, we can only add or remove resources to each side
of a product independently of what is on the other side of the concurrent product.

As we cannot use the modification function for redistribution of resources, instead, we make
use of redistribution functions, which are defined in terms of redistribution operators.

In Figure 1, the rules for the operational semantics of sequential composition are

R,E
a
ÝÑ R1, E1 δ P ∆

R,E :δ F
a
ÝÑ R1, E1 :δ F

PrefixOne
R,E Û δpRq, F

a
ÝÑ R1, F 1 δ P ∆

R,E :δ F
a
ÝÑ R1, F 1

PrefixTwo.

The resource-process pair R,E :δ F consists of a resource bunch and a sequential composition.
The sequential composition consists of two processes, E and F , and a redistribution function δ.
If the prefix E can evolve with the resources R, then the sequential composition evolves similarly
(the PrefixOne rule). If the prefix E cannot evolve with the resources R, then the redistribution
function is applied to the resources R, and the pair that consists of the resulting resources and
the suffix, δpRq, F , is evolved (the PrefixTwo rule). The redistribution function is applied to
the resources so that the structure of the resulting resources will match the structure of the suffix
process.

Definition 7 (Redistribution operators). The following functions δ : R Ñ R are redistribution
operators:

(1) Commutative operators: δ : Rb S ÞÑ S bR and δ : R‘ S ÞÑ S ‘R;
(2) Associative operators: δ : Rb pS b T q ÞÑ pRb Sq b T , δ : pRb Sq b T ÞÑ Rb pS b T q,

δ : R‘ pS ‘ T q ÞÑ pR‘ Sq ‘ T , and δ : pR‘ Sq ‘ T ÞÑ R‘ pS ‘ T q;
(3) Distributive operators: δ : Rb pS ‘ T q ÞÑ pRb Sq ‘ pRb T q;
(4) Operators that add resources: δ : R ÞÑ pRb Sq and δ : R ÞÑ pR‘ Sq;
(5) Operators that delete resources: δ : Rb S ÞÑ R and δ : R‘ S ÞÑ R.

�

Definition 8 (Redistribution functions). A redistribution function is a (partial) function δ :
R á R generated by the composition of a (subset of the) functions in Definition 7, together
with the identity. �

Let δ, δ1, etc. denote redistribution functions on a given resource model R, and let ∆ denote
a set of redistribution functions, which is one of the parameters to the calculus.

Example 9. Consider the resource model in Example 3. Let the function δ : R á R map
sbe ÞÑ psbeq‘pebsq. This function can be defined using the subset of redistribution operators
consisting only of the operators that add resources. �

From a modelling perspective, we argue that the use of redistribution functions encourages
good discipline with respect to making decisions about how resources are allocated to processes
within a system. In previous work [11, 12, 14], all possible allocations were possible, and a system
could non-deterministically choose between them. In our work, whenever resources are to be
re-allocated (i.e., following each reduction step, within a sequential composition), a conscious
modelling decision is required as to where the resources should be allocated. This permits us to

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 9

model complex behaviours, such as in Example 21, below, concerning weak memory consistency.
There, after certain steps, resources are copied around; and, after others, some resources are
removed. Under an alternative semantics for weak memory consistency, we could require that a
process reads its own most recent write (rather than just any of its writes, as in the example; this
is known as read-your-writes consistency [36]). This would be straightforward to model through
a redistribution function that deletes old local writes, but distributes them to other processes.
This demonstrates how intensional choices about the allocation of resources can be used to model
important properties of complex systems.

In classical process calculi, restriction is used to ensure that certain behaviour is only visible,
or accessible, in certain parts of a system. A similar feature can be incorporated into resource-
process modelling [11]. If a resource-process pair is allocated additional resources, it may be
able to perform additional behaviour. The hiding operator on processes associates additional
resources with the process to which it is applied.

In Figure 1, the rule for the operational semantics of hiding is

hpRq, E
a
ÝÑ hpR1q, E1 h P H

R, νh.E
νh.a
ÝÝÝÑ R1, νh.E1

Hide.

The resource-process pair R, νh.E consists of a resource bunch and a hiding process. The hiding
process consists of a hiding function h and of a process E. The additional resources allocated
to the process E are acquired by the application of the hiding function h to the resources R.
The operational semantics of the resource-process pair R, νh.E is then defined in terms of the
operational semantics of the resource-process pair hpRq, E. Note that the action νh.a performed
by the pair R, νh.E is not the same as the action a that is performed by the pair hpRq, E, though
it is defined in terms of a. This is addressed further below.

Definition 10 (Hiding functions on resources). A function h : R Ñ R on a resource model is a
hiding function if: it is a bijection; it is a homomorphism with respect to b and ‘; and, at the
leaves of a bunch, atomic resources are mapped to atomic resources. �

Let h, h1, etc. denote hiding functions on a given resource model R, and let H denote a set
of hiding functions, which is the final parameter to the calculus.

Example 11. Let Res “ te, su, the empty resource be e,

R “ pe ‘ sq b e R1 “ ps ‘ sq b e
S “ pe b eq ‘ ps b eq S1 “ ps b eq ‘ ps b eq
T “ e b e T 1 “ s b e,

and let R be the least set such that R,R1, S, S1, R, T 1 P R and the constraints in Definition 2
hold. We define a hiding function.

hpRq “ R1 hpSq “ S1 hpT q “ T 1

hpR1q “ R hpS1q “ S hpT 1q “ T

hpzq “ z otherwise

Note that the function h is a homomorphism with respect to the bunched structure of the
resources. Note also, where the function does not map elements of R to themselves, at the
leaves, atomic resources are mapped to atomic resources. For example, h maps pe ‘ sq b e to
ps ‘ sq b e. Both bunches have the same bunching structure, p ‘ q b . At the first leaf from
the left, the atomic resource e is mapped to the atomic resource s, and, at the other leaves, the
atomic resources are mapped to themselves. �

10 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

If a resource–process pair is allocated additional resources, it may be able to perform additional
actions. This behaviour must then be restricted, however; only actions that could be performed
without the additional resources must be visible beyond the process where the hidden resources
are available. An example determination of such an action is in Example 20.

Actions are generated by the composition of atomic actions (denoted α, β, etc.), using ¨. An
action a ‘contains’ an action b exactly when they have the same structure, and at each leaf, b has
either the same atomic action as the former, or the action 1; for example, 1 ¨ pβ ¨ 1q ď α ¨ pβ ¨ 1q ď
α ¨ pβ ¨ γq. We define a partial order based on the notion of containment.

Definition 12 (Action-containment order). The least relation under reflexivity and transitivity
such that the following hold:

1 ď α
p1q

a ď a1 b ď b1

a ¨ b ď b1 ¨ a1
p2q.

�

The first rule defines that the action 1 is contained in any atomic action. The second rule
defines how containment relates to the structure of actions. If a ď b, then a is said to be a
sub-action of b.

We can now formalize our definition of hiding function on actions, as described above.

Definition 13 (Hiding functions on actions). Let a P A be an action, µ : A ˆ R á R be a
modification function, h : R Ñ R be a hiding function on resources, and

Aa,h “ tb ď a | for all R,S P R, µpa, hpRqq “ hpSq implies µpb, Rq “ Su

be an auxiliary set definition. Then, a hiding function on actions ν : pR Ñ Rq Ñ A Ñ A is
defined as

νh.a “

"

suppAa,hq if suppAa,hq is defined
1 otherwise.

�

Definition 14 (Processes). Processes are formed according to the following grammar:

E ::“ 0 | X | a | E ` E | E ˆ E | E :δ E | νh.E | fix X.E.

�

Here, 0 is the zero process, X is a process variable, a is an action, h is a hiding function, δ P F
is a redistribution function, X is an n-tuple of process variables, E is an n-tuple of processes,
and i P 1 . . . n. Let Proc be the set of all processes, and E, F etc. denote processes. The process
1, which performs the action 1 infinitely, is denoted as µX.1 :id X.

The process structure follows that of ACP [5], with the exception of hiding νh.E, which is
based on [11, 14], and the annotation δ on sequential composition E :δ F . Thus E `F is a sum,
E ˆF is a synchronous product, and fixX.E is a fixed point. The term νh.E is a hiding process.
The term E :δ F is an annotated sequential composition; the semantics of the annotation is
explained below.

The fix operator binds occurrences of process variables within processes. It will occasionally
be necessary to distinguish processes that contain no free variables (sometimes called agents)
from the more general process expressions that exist in the language. Let Agents be the set
of all agents. The process F rE{Xs is the process formed by the (capture-avoiding) substitution
of E for the corresponding variable X that is free in F . We use brackets, pq, to disambiguate
processes in the absence of their construction trees.

Let Proc be the set of all processes, and E, F , etc. denote processes.

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 11

R, a
a
ÝÑ µpa,Rq,0

Act
Ri, Ei

a
ÝÑ R1i, E

1
i

R1 ‘R2, E1 ` E2
a
ÝÑ R1i, E

1
i

Sum

R1, E1
a1
ÝÑ R11, E

1
1 R2, E2

a2
ÝÑ R12, E

1
2

R1 bR2, E1 ˆ E2
a1¨a2
ÝÝÝÑ R11 bR

1
2, E

1
1 ˆ E

1
2

Prod

R,E
a
ÝÑ R1, E1 δ P ∆

R,E :δ F
a
ÝÑ R1, E1 :δ F

PrefixOne
R,E Û δpRq, F

a
ÝÑ R1, F 1 δ P ∆

R,E :δ F
a
ÝÑ R1, F 1

PrefixTwo

hpRq, E
a
ÝÑ hpR1q, E1 h P H

R, νh.E
νh.a
ÝÝÝÑ R1, νh.E1

Hide
R,Erfix X.E{Xs

a
ÝÑ R1, E1

R,fixX.E
a
ÝÑ R1.E1

FV pEqĎtXu Rec

Figure 1. Operational Semantics

A state is a pair consisting of a resource and a process. Let State “ RˆProc be the set of all
states. A closed state is a pair consisting of a resource and an agent. Let CState “ RˆAgents
be the set of all closed states.

The operational behaviour of a state is defined by a labelled family of transition relations

a
ÝÑ Ď Stateˆ State,

indexed by actions a P A. The family is defined recursively using the derivation rules in Figure 1.
An action process reduces according to the modification function µ. Nondeterminism is intro-

duced solely through the presence of sums. There, a choice must be made both in the process
component and the resource component. Product processes distribute the resources according
to the multiplicative structure in the resources.

Sequential composition mostly behaves intuitively. If the prefix can be reduced, with the
accompanying resources, then the sequential composition follows similarly. If the prefix process
cannot be reduced, then the suffix process is reduced. The suffix process is, however, accompanied
by the resources that result from the application of the annotated redistribution function to the
existing resources. The redistribution function is used to redistribute the resources between
the process components, following a reduction that moves to the second part of a sequential
composition. It should be noted that the use of process prefixing, rather than action prefixing,
is a deliberate design decision, made so that models can more intuitively reflect the structure of
the system they abstract.

Example 15 (Semaphore). A simple example of the use of ‘-bunched resources and redistri-
bution functions is a system where two processes repeatedly compete for the use of a semaphore.
We use two atomic actions, a and b, both of which require access to a semaphore, s, in order to
be performed. We differentiate between the a and b actions to help make clear which process
is accessing the semaphore at any given point. Let Act “ ta, bu, Res “ te, su, with empty
resource e,

R “ ps‘ sq b pe‘ eq S “ pe‘ eq b ps‘ sq T “ R‘ S,

and let R be the least set such that R,S, T P R and the constraints in Definition 2 hold. Let
the modification function be the least such that

µpa, sq “ s µpb, sq “ s

12 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

and the constraints in Definition 5 hold. The resource R denotes the scenario where the
semaphore is allocated to the first process, and S where it is allocated to the second process.
The resource T then denotes the scenario where the semaphore may be allocated to either of
the processes, but not to both. The process E “ p1 ` aq ˆ p1 ` bq denotes a system where two
subprocesses each attempt to access the semaphore (through actions a and b respectively). When
the process E ` E is combined with the resource T , the state can either evolve through use of
the resource R (with process E), or through the use of the resource S (with process E). In the
first case, the first process can access the semaphore, but the second process can only tick (the
action 1):

µpa, sq “ s

s, a
a
ÝÑ s,0

ps‘ sq, p1` aq
a
ÝÑ s,0

µp1, eq “ e

e, 1
1
ÝÑ e,0

pe‘ eq, p1` bq
1
ÝÑ e,0

ps‘ sq b pe‘ eq, p1` aq ˆ p1` bq
a¨1
ÝÝÑ sb e,0ˆ 0

R‘ S,E ` E
a¨1
ÝÝÑ sb e,0ˆ 0

.

In the second case, then the converse is true:

µp1, eq “ e

e, 1
1
ÝÑ e,0

pe‘ eq, p1` aq
1
ÝÑ e,0

µpb, sq “ s

s, b
b
ÝÑ s,0

ps‘ sq, p1` bq
b
ÝÑ s,0

pe‘ eq b ps‘ sq, p1` aq ˆ p1` bq
1¨b
ÝÝÑ eb s,0ˆ 0

R‘ S,E ` E
1¨b
ÝÝÑ eb s,0ˆ 0

.

Following these evolutions, the resulting resources will either be of the form s b e or of the
form e b s. If this bunched resource were combined with the process E ` E, then no progress
could be made, as the structure of the resources doesn’t match the structure of the processes.
Hence, following the above evolutions, if we plan to make use the resources with another iteration
of E `E, we must redistribute the resources, to reintroduce the relevant structure. This can be
done through a redistribution function:

δpzq “

"

T if z “ sb e or z “ eb s
z otherwise

Note that this redistribution function can be defined in terms of redistribution operators that
add resources (c.f. Definition 7).

We then can define a system where processes contend repeatedly for access to the semaphore:

F “ fix X.ppE ` Eq :δ Xq.

This system can evolve as

T, F
a¨1
ÝÝÑ sb e, p0ˆ 0q :δ F.

Following this, the resulting state can evolve as:

sb e,0ˆ 0 Û

. . .

R‘ S,E ` E
1¨b
ÝÝÑ eb s, p0ˆ 0q :δ F δpsb eq “ R‘ S

sb e, p0ˆ 0q :δ F
1¨b
ÝÝÑ eb s, p0ˆ 0q :δ F

.

�

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 13

The use of process prefixing, rather than action prefixing, is a deliberate design decision,
made so that states can more intuitively reflect the structure of the system they abstract. In the
above example, the redistribution function δ maps sb e to a ‘-bunched resource, which creates
a non-deterministic choice concerning which of the subprocess is allocated the semaphore. We
cannot, however, define some resource U , redistribution functions δ1 and δ2, and process

G “ pfix X.p1 :δ1 Xq ` pa :δ1 Xqq ˆ pfix Y.p1 :δ2 Y q ` pb :δ2 Y qq,

such that the state U,G is bisimilar to T, F in Example 15: the redistribution functions δ1 and
δ2 would only have access to the resources on either side of the b-bunched resource (s and e,
respectively) and hence neither would be able to redistribute the resources on the other side of
the b-bunch. We could define a redistribution function δ2 and process H

δ2psq “ s‘ ps‘ sq H “ fix X.pp1 :δ2 Xq ` ppa :δ2 Xq ` pb :δ2 Xqqq,

which, with resource s ‘ ps ‘ sq, is bisimilar to T,E. This system, however, loses the intuitive
structure of two agents contending for a resource, and looks essentially like a state created via
an expansion theorem (as in Lemma 30, below). In order to permit redistribution of resources
between agents, and to prevent the states collapsing to an ‘expanded’ form, we permit process
prefixing.

Example 16 (Mutual exclusion (as in [14])). A slightly more complex example is a system
where two subprocesses use a semaphore to ensure that only one is acting in its critical region
at any given time. Here we use only one action that accesses the semaphore, a. Let Act “ tau,
Res “ te, su, with empty resource e,

R “ ps‘ ps‘ sqq b pe‘ pe‘ eqq S “ pe‘ pe‘ eqq b ps‘ ps‘ sqq T “ R‘ S,

and R be the least set such that T P R and the constraints in Definition 2 hold. Let the
modification function be the least such that µpa, sq “ s and the constraints in Definition 5 hold.
We define the following redistribution functions:

δpzq “

$

’

’

&

’

’

%

e‘ pe‘ eq if z “ e
s‘ ps‘ sq if z “ s
T if z “ sb e or z “ eb s
z otherwise,

and

δ1pzq “

$

&

%

e‘ e if z “ e
r ‘ r if z “ r
z otherwise.

We define the processes of the system as follows:

E “ fix X.ppE1 ˆ E1q ` pE1 ˆ E1qq :δ1 X

E1 “ fix Y.p1 :δ Y ` p1` a :δ1 E2qq E2 “ fix Z.pa :δ1 Z ` aq.

14 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

The process E consists of a choice between two identical subprocesses in parallel. Each
subprocess attempts to acquire the semaphore. When it does so, it enters its critical region, E2:

µpa, sq “ s

s, a
a
ÝÑ s,0

s, a :δ1 E2
a
ÝÑ s,0 :δ1 E2

s‘ s, 1` a :δ1 E2
a
ÝÑ s,0 :δ1 E2

s‘ ps‘ sq, 1 :δ E1 ` p1` a :δ1 E2q
a
ÝÑ s,0 :δ1 E2

µp1, eq “ e

e, 1
1
ÝÑ e,0

e, 1 :δ E1
1
ÝÑ e,0 :δ E1

e‘ pe‘ eq, 1 :δ E1 ` p1` a :δ1 E2q
1
ÝÑ e,0 :δ E1

R,E1 ˆ E1
a¨1
ÝÝÑ s b e,0 :δ1 E2 ˆ 0 :δ E1

R ‘ S, pE1 ˆ E1q ` pE1 ˆ E1q
a¨1
ÝÝÑ s b e,0 :δ1 E2 ˆ 0 :δ E1

R ‘ S, ppE1 ˆ E1q ` pE1 ˆ E1qq :δ E
a¨1
ÝÝÑ s b e, p0 :δ1 E2 ˆ 0 :δ E1q :δ E

.

While there, the other process may only tick, and cannot acquire the semaphore:

s,0 Û

µpa, sq “ s

s, a
a
ÝÑ s,0

s, a :δ1 E2
a
ÝÑ s,0 :δ1 E2

s‘ s, a :δ1 E2 ` a
a
ÝÑ s,0 :δ1 E2

δ1psq,fix Z.pa :δ1 Z ` aq
a
ÝÑ s,0 :δ1 E2

s,0 :δ1 E2
a
ÝÑ s,0 :δ1 E2

e,0 Û

µpe, 1q “ e

e, 1
1
ÝÑ e,0

e, 1 :δ E1
1
ÝÑ e,0 :δ E1

e‘ pe‘ eq, 1 :δ E1 ` p1` a :δ E2q
1
ÝÑ e,0 :δ E1

δpeq, E1
1
ÝÑ e,0 :δ E1

e,0 :δ E1
1
ÝÑ e,0 :δ E1

s b e,0 :δ1 E2 ˆ 0 :δ E1
a¨1
ÝÝÑ s b e,0 :δ1 E2 ˆ 0 :δ E1

s b e, p0 :δ1 E2 ˆ 0 :δ E1q :δ E
a¨1
ÝÝÑ s b e, p0 :δ1 E2 ˆ 0 :δ E1q :δ E

When the process that has the semaphore decides to exit its critical region (by choosing the
process a instead of the process a : E2), both prefix processes can terminate:

s,0 Û

µpa, sq “ s

s, a
a
ÝÑ s,0

s‘ s, a :δ1 E2 ` a
a
ÝÑ s,0

δ1psq,fix Z.pa :δ1 Z ` aq
a
ÝÑ s,0

s,0 :δ1 E2
a
ÝÑ s,0

e,0 Û

µpe, 1q “ e

e, 1
1
ÝÑ e,0

e‘ e, 1` a :δ E2
1
ÝÑ e,0

e‘ pe‘ eq, 1 :δ E1 ` p1` a :δ E2q
1
ÝÑ e,0

δpeq, E1
1
ÝÑ e,0

e,0 :δ E1
1
ÝÑ e,0

s b e,0 :δ1 E2 ˆ 0 :δ E1
a¨1
ÝÝÑ s b e,0ˆ 0

s b e, p0 :δ1 E2 ˆ 0 :δ E1q :δ E
a¨1
ÝÝÑ s b e, p0ˆ 0q :δ E

.

In this example, one of the processes may obtain the semaphore and proceed to the critical
region, but both cannot. Moreover, once one process has gone into its critical region, the other
process cannot pre-empt it, through the use of the semaphore, to enter its critical region, until
the former chooses to exit its critical region. �

Example 17 (Resource transfer (as in [14])). A similar example is given by a system in which
only one of the parallel tasks is ‘active’ at any one time, and that, instead of the subprocesses non-
deterministically entering their critical regions, they take turns. This can be achieved through
the passing of tokens, in the form of resources, back and forth between the processes. These
resources are known as ‘permits’, which are ‘produced’ by the actions p1 and p2, and are ‘gotten’

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 15

by the actions g1 and g2. The resource ri is required for the gi action to be performed, and is
used to guard the i’th process’s critical region. Let Act “ tg1, g2, p1, p2u, Res “ te, r1, r2u, with
empty resource e,

R1 “ pr1 ‘ pr1 ‘ r2qq b pe‘ pe‘ eqq R2 “ pe‘ pe‘ eqq b pr2 ‘ pr2 ‘ r2qq.

and R be the least set such that R1, R2 P R, and the constraints in Definition 2 hold. Let the
modification function be the least such that

µpp1, eq “ r2 µpp2, eq “ r1 µpg1, r1q “ e µpg2, r2q “ e,

and the constraints in Definition 5 hold.
A process may either ‘get’ the relevant permit (if available) and proceed to its critical region,

tick and loop, or tick and terminate. Once within the critical region, a process may perform its
task (here we simply perform a tick action and loop), or produce a token that enables the other
process and leave its critical region. As the permit for one processes is generated by the other,
following an evolution, the processes need to exchange their resources. This is performed by the
redistribution function δ:

δpzq “

$

’

’

’

’

&

’

’

’

’

%

pe‘ pe‘ eqq if z “ e
pr1 ‘ pr1 ‘ r1qq if z “ r1
pr2 ‘ pr2 ‘ r2qq if z “ r2
R2 if z “ r2 b e
R1 if z “ e b r1,

We also make use of two other redistribution functions, δ1 and δ:

δ1pzq “

$

’

’

&

’

’

%

e‘ e if z “ e
r1 ‘ r1 if z “ r1
r2 ‘ r2 if z “ r2,
z otherwise,

We define the processes of the system as follows:

E “ fix X.pE1 ˆ E2q :δ X

E1 “ fix Y1.pg1 :δ1 E
1
1 ` p1 :δ Y1 ` 1qq E11 “ fix Z1.p1 :δ1 Z1 ` p1q

E2 “ fix Y2.pg2 :δ1 E
1
2 ` p1 :δ Y2 ` 1qq E12 “ fix Z2.p1 :δ1 Z2 ` p2q.

The system R1, E represents the scenario where the subprocess E1 goes first. It performs its
‘get’ action, consumes its permit, and enters its critical region, E11:

µpg1, r1q “ e

r1, g1
g1
ÝÑ e,0

r1, g1 :δ1 E
1
1
g1
ÝÑ e,0 :δ1 E

1
1

r1 ‘ pr1 ‘ r2q, g1 :δ1 E
1
1 ` p1 :δ E1 ` 1q

g1
ÝÑ e,0 :δ1 E

1
1

µp1, eq “ e

e, 1
1
ÝÑ e,0

e, 1 :δ E2
1
ÝÑ e,0 :δ E2

e‘ e, 1 :δ E2 ` 1
1
ÝÑ e,0 :δ E2

e‘ pe‘ eq, g2 :δ1 E
1
2 ` p1 :δ E2 ` 1q

1
ÝÑ e,0 :δ E2

pr1 ‘ pr1 ‘ r2qq b pe‘ pe‘ eqq, E1 ˆ E2
g1¨1
ÝÝÑ e b e, p0 :δ1 E

1
1q ˆ p0 :δ E2q

R1, pE1 ˆ E2q :δ E
g1¨1
ÝÝÑ e b e, pp0 :δ1 E

1
1q ˆ p0 :δ E2qq :δ E

.

16 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

The first process can evolve through its critical region, and finishes with its p1 action, which
produces the permit for the second process to proceed:

e,0 Û

µpp1, eq “ r2

e, p1
p1
ÝÑ r2,0

e‘ e, 1 :δ1 E
1
1 ` p1

p1
ÝÑ r2,0

δ1peq, E11
p1
ÝÑ r2,0

e,0 :δ1 E
1
1
p1
ÝÑ r2,0

e,0 Û

. . .

e‘ pe‘ eq, g2 :δ1 E
1
2 ` p1 :δ E2 ` 1q

1
ÝÑ e,0

δpeq, E2
1
ÝÑ e,0

e,0 :δ E2
1
ÝÑ e,0

e b e, pp0 :δ1 E
1
1q ˆ p0 :δ E2qq

p1¨1
ÝÝÑ r2 b e,0ˆ 0

e b e, pp0 :δ1 E
1
1q ˆ p0 :δ E2qq :δ E

p1¨1
ÝÝÑ r2 b e, p0ˆ 0q :δ E

.

When the prefix terminates, the system can apply the redistribution function δ to the resources
and evolve according to the suffix. This transfers the permit r2 to the second process, so that it
can proceed and enter its own critical region:

r2 b e, p0ˆ 0q Û

. . .

pe‘ pe‘ eqq, E1
1
ÝÑ e,0 :δ E1

µpg2, r1q “ e

r2, g2
g2
ÝÑ e,0

r2, g2 :δ1 E
1
2
g2
ÝÑ e,0 :δ1 E

1
2

pr2 ‘ pr2 ‘ r2qq, E2
g2
ÝÑ e,0 :δ1 E

1
2

R2, E1 ˆ E2
1¨g2
ÝÝÑ eb e, p0 :δ E1q ˆ p0 :δ1 E

1
2q

R2, pE1 ˆ E2q :δ E
1¨g2
ÝÝÑ eb e, pp0 :δ E1q ˆ p0 :δ1 E

1
2qq :δ E

δpr2 b eq, E
1¨g2
ÝÝÑ eb e, pp0 :δ E1q ˆ p0 :δ1 E

1
2qq :δ E

r2 b e, p0ˆ 0q :δ E
1¨g2
ÝÝÑ eb e, pp0 :δ E1q ˆ p0 :δ1 E

1
2qq :δ E

.

This example can be straightforwardly extended to ‘round-robin’ schedulers, and demonstrates
the complex communication and scheduling patterns that can be represented using the resource-
process paradigm. �

Example 18 (Handshaking (as in [14])). A different form of distributed task coordination is
that where two processes only proceed together, and may not proceed individually. This scenario
(known as a ‘join’) can be implemented through the use of a pair of semaphores. Each process
may either choose to ‘go’, which is denoted by the gi action, or to ‘wait’, which is denoted by
the wi action

Let Act “ tg1, g2, w1, w2u, Res “ te, r1, r2u, e be the empty resource,

R “ pr1 ‘ r1q b pr2 ‘ r2q S “ pr2 ‘ r2q b pr1 ‘ r1q T “ R ‘ S.

and R be the least set such that R,S P R, and the constraints in Definition 2 hold. Let the
modification function be the least such that

µpg1, r1q “ r1 µpg2, r2q “ r2 µpw1, r2q “ r2 µpw2, r1q “ r1,

and the constraints in Definition 5 hold. The ‘go’ action of one process uses the same semaphore
as the ‘wait’ action of the other.

The resource R denotes the scenario where the first process has the first semaphore, and the
second process has the second semaphore. The resource S denotes the opposite scenario. The
resource T denotes the scenario where resources can be allocated according to R or according to

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 17

S, but where neither both processes nor a single process can have both semaphores. We make
use of the redistribution function

δpzq “

$

&

%

r1 ‘ r1 if z “ r1
r2 ‘ r2 if z “ r2
T if z “ r1 b r2 or z “ r1 b r2.

We define the processes of the system as

E “ fix X.ppE1 ˆ E2q ` pE1 ˆ E2qq :δ X
E1 “ w1 ` pg1 :δ E

1
1q E2 “ w2 ` pg2 :δ E

1
2q,

where E11 and E12 are the critical regions of each process (which we elide for the purposes of this
example).

The process
`

w1 ` pg1 :δ E
1
1q
˘

ˆ
`

w2 ` pg2 :δ E
1
2q
˘

consists of two subprocesses, each of which
can either choose to wait, or to go (and to proceed to the subprocess’s critical region). When
combined with resource T , the process can either evolve through the use of the resource R or
through the use of the resource S.

In the latter case, each process can only perform its ‘wait’ action.

µpw1, r2q “ r2

r2, w2
w1
ÝÝÑ r2,0

r2 ‘ r2, w1 ` pg1 :δ E
1
1q

w1
ÝÝÑ r2,0

µpw2, r1q “ r1

r1, w2
w2
ÝÝÑ r1,0

r1 ‘ r1, w2 ` pg2 :δ E
1
2q

w2
ÝÝÑ r1,0

pr2 ‘ r2q b pr1 ‘ r1q, E1 ˆ E2
w1¨w2
ÝÝÝÝÑ r2 b r1,0ˆ 0

R‘ S, ppE1 ˆ E2q ` pE1 ˆ E2qq
w1¨w2
ÝÝÝÝÑ r2 b r1,0ˆ 0

T, ppE1 ˆ E2q ` pE1 ˆ E2qq :δ E
w1¨w2
ÝÝÝÝÑ r2 b r1, p0ˆ 0q :δ E

In the second case, each process can only perform its ‘go’ action.

µpg1, r1q “ r1

r1, g1
g1
ÝÑ r1,0

r1, g1 :δ E
1
1
g1
ÝÑ r1,0 :δ E

1
1

r1 ‘ r1, w1 ` pg1 :δ E
1
1q

g1
ÝÑ r1,0 :δ E

1
1

µpg2, r2q “ r2

r2, g2
g2
ÝÑ r2,0

r2, g2 :δ E
1
2
g2
ÝÑ r2,0 :δ E

1
2

r2 ‘ r2, w2 ` pg2 :δ E
1
2q

g2
ÝÑ r2,0 :δ E

1
2

pr1 ‘ r1q b pr2 ‘ r2q, E1 ˆ E2
g1¨g2
ÝÝÝÑ r1 b r2, p0 :δ E

1
1q ˆ p0 :δ E

1
2q

R‘ S, ppE1 ˆ E2q ` pE1 ˆ E2qq
g1¨g2
ÝÝÝÑ r1 b r2, p0 :δ E

1
1q ˆ p0 :δ E

1
2q

T, ppE1 ˆ E2q ` pE1 ˆ E2qq :δ E
g1¨g2
ÝÝÝÑ r1 b r2, pp0 :δ E

1
1q ˆ p0 :δ E

1
2qq :δ E

When the second of the resources is chosen, the subprocesses must perform the ‘wait’ actions
and loop back to the starting process. Notice that the two processes can either wait or proceed
together, but cannot proceed independently. �

Example 19 (Asynchronous resource transfer without exclusion (as in [14])). Some distributed
coordination approaches don’t make use of exclusion: the most common form is a producer-
consumer system, where one process generates work that another process can handle at a later
point. We make use of the action p, which produces an additional resource to be handled, and
c, which consumes a resource. Let Act “ tp, cu, Res “ N, the empty resource be 0, R be the
least set such that, for all m,n P N, pm ‘mq b pn ‘ nq P R and the constraints in Definition 2
hold. Let the modification function be the least such that

µpp, nq “ n` 1 µpc, n` 1q “ n,

18 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

and the constraints in Definition 5 hold. We make use of the redistribution function

δpzq “ p0‘ 0q b pn1 ‘ n1q if z “ mb n and n1 “ m` n.

We define the process of the system as

E “ fix X.ppp1` pq ˆ p1` cqq :δ Xq.

The process p1 ` pq ˆ p1 ` cq consists of two subprocesses. The first can either choose to
produce a resource or to tick. The second can either choose to consume a resource, if available,
or to tick. When combined with the bunched resource p0 ‘ 0q b p2 ‘ 2q, the subprocesses can
both perform either action. When combined with the bunched resource p0 ‘ 0q b p0 ‘ 0q, the
first can either produce or tick, while the latter can only tick. The first evolution of the system
produces a work package:

µpp, 0q “ 1

0, p
p
ÝÑ 1,0

0‘ 0, 1` p
p
ÝÑ 1,0

µp1, 0q “ 0

0, 1
1
ÝÑ 0,0

0‘ 0, 1` c
1
ÝÑ 0,0

p0‘ 0q b p0‘ 0q, p1` pq ˆ p1` cq
p¨1
ÝÝÑ 1b 0,0ˆ 0

p0‘ 0q b p0‘ 0q, p1` pq ˆ p1` cq :δ E
p¨1
ÝÝÑ 1b 0, p0ˆ 0q :δ E

.

Following this, the work package is transferred to the consumer, which can consume it:

1b 0,0ˆ 0 Û

µp1, 0q “ 0

0, 1
1
ÝÑ 0,0

0‘ 0, 1` p
1
ÝÑ 0,0

µpc, 1q “ 0

1, c
c
ÝÑ 0,0

1‘ 1, 1` c
c
ÝÑ 0,0

p0‘ 0q b p1‘ 1q, p1` pq ˆ p1` cq
1¨c
ÝÝÑ 0b 0,0ˆ 0

p0‘ 0q b p1‘ 1q, pp1` pq ˆ p1` cqq :δ E
1¨c
ÝÝÑ 0b 0, p0ˆ 0q :δ E

δp1b 0q, E
1¨c
ÝÝÑ 0b 0, p0ˆ 0q :δ E

1b 0, p0ˆ 0q :δ E
1¨c
ÝÝÑ 0b 0, p0ˆ 0q :δ E

.

The following evolutions are possible, demonstrating the asynchronous nature of the transfer.

p0‘ 0q b p0‘ 0q, pp1` pq ˆ p1` cqq :δ E
p¨1
ÝÝÑ 1 b 0, p0ˆ 0q :δ E
p¨1
ÝÝÑ 1 b 1, p0ˆ 0q :δ E
1¨1
ÝÝÑ 0 b 2, p0ˆ 0q :δ E
1¨c
ÝÝÑ 0 b 1, p0ˆ 0q :δ E
p¨c
ÝÝÑ 1 b 0, p0ˆ 0q :δ E
. . .

.

�

Example 20 (Generalized hiding). Previous work on hiding simply composes (multiplicatively)
additional resources onto the existing resources. In our work, however, the reduction of a
resource-process pair depends critically on both the structure of the bunched resource and of
the process. Two bisimilar states may have vastly different internal structures to their resource
components, so composing additional resources onto each in the same way is unlikely to respect
said resource bunched structure. This example demonstrates why we need a generalized hiding
bijection.

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 19

Let Act “ ta, b, cu, Res “ te, su, the empty resource be e,

R “ pe ‘ sq b e R1 “ ps ‘ sq b e
S “ pe b eq ‘ ps b eq S1 “ ps b eq ‘ ps b eq
T “ e b e T 1 “ s b e,

and let R be the least set such that R,R1, S, S1, R, T 1 P R and the constraints in Definition 2
hold. Let the modification function be the least such that

µpa, sq “ s µpb, sq “ s µpc, eq “ e,

and the constraints in Definition 5 hold.
We define two processes, which exemplify the notion of distributivity.

E “ pa` bq ˆ c F “ paˆ cq ` pbˆ cq

We also define a hiding function.

hpRq “ R1 hpSq “ S1 hpT q “ T 1

hpR1q “ R hpS1q “ S hpT 1q “ T

hpzq “ z otherwise

Note that h is a bijection. Here, the states R,E and S, F can perform the action b ¨ c, but not
the action a ¨ c. The states R1, E and S1, F can, however, perform the action a ¨ c. The hiding
function h transforms R to R1, S to S1, and T to T 1. The state R, νh.E then reduces as

µpa, sq “ s

s, a
a
ÝÑ s,0

s ‘ s, a` b
a
ÝÑ s,0

µpc, eq “ e

e, c
c
ÝÑ e,0

hpRq, pa` bq ˆ c
a¨c
ÝÝÑ hpT q,0ˆ 0

R, νh.E
νh.pa¨cq
ÝÝÝÝÝÑ T, νh.p0ˆ 0q

,

where hpRq “ ps ‘ sq b e and hpT q “ s b e, and the state S, νh.F reduces as

µpa, sq “ s

s, a
a
ÝÑ s,0

µpc, eq “ e

e, c
c
ÝÑ e,0

sb e, aˆ c
a¨c
ÝÝÑ sb e,0ˆ 0

hpSq, paˆ cq ` pbˆ cq
a¨c
ÝÝÑ hpT q,0ˆ 0

S, νh.F
νh.pa¨cq
ÝÝÝÝÝÑ T, νh.p0ˆ 0q

,

where hpSq “ ps b eq ‘ ps b eq. Here, in order for the processes E and F to perform the action
a ¨ c, they need the relevant resources in different parts of their resource bunches. Simply adding
additional resources, either using b-bunching or ‘-bunching, would not respect the structure
required for either process.

While the states R1, E and S1, F can perform the action a ¨ c, by the Hide rule, the states
R, νh.E and S, νh.F , which use the hiding function h to obtain additional resources, perform
the νh.pa ¨ cq action. Intuitively, νh.pa ¨ cq denotes the largest action which can be performed on
the non-hidden resources.

In order to determine the result of applying the function νh to action a ¨c, recall Definition 13.
There are four sub-actions of a ¨ c, namely 1 ¨1, a ¨1, 1 ¨ c, and a ¨ c. The set Aa¨c,h the sub-actions
x of a ¨ c such that, for all resources U , µpa ¨ c, hpUqq “ hpV q implies that µpx, Uq “ V . The only

20 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

U such that µpa ¨ c, hpUqq is defined is U “ T . In that case, hpT q “ T 1, µpa ¨ c, hpUqq “ hpT q,
and we can tabulate the definition of µpx, Uq, and whether the above implication holds.

x µpx, Uq µpa ¨ c, hpUqq “ hpV q implies µpx, Uq “ V

1 ¨ 1 T J

a ¨ 1 Ò K

1 ¨ c T J

a ¨ c Ò K

Here we have that Aa¨c,h “ t1 ¨ 1, 1 ¨ cu, the supremum of which, under action inclusion, is 1 ¨ c.
This fits with our intuition of hiding actions that are only defined with the additional resources;
action a requires the additional resource r, but c is defined on resource e. �

Example 21 (Weak memory consistency). In distributed systems, it is costly (in terms of time
and communication) to ensure that all updates to shared variables are propagated to all the nodes
atomically. A weaker requirement is weak memory consistency; that is, if no further updates
are made to the shared variable, then at some point in the future, all nodes will see only the
most recent value. In this example, we define a system where any value assigned by any node to
a shared variable can be read, up to a synchronization point, after which only the most recent
value can be read. For simplicity, we assume a shared, discrete clock, to order the writes: we see
no reason why a more complex system such as vector clocks [26] could not be used to replace
the shared clock. Such a system is of a decidedly distributed systems character, as opposed to
the single-chip concurrency of weak memory models.

We consider a single shared variable. Let τ ÞÑ v denote the value v P Z assigned to that
variable, at time τ P N. Let Res be the set of all triples pτ, τ 1 ÞÑ v1, T q, where τ denotes the
current time in the state, τ 1 ÞÑ v1 denotes the assignment to be read, and T denotes the set of
all (non-flushed) assignments seen by a single process in the course of an execution. The bunch
pτ, τ 1 ÞÑ v1, T q ‘ pτ, τ2 ÞÑ v2, T q denotes two writes to the shared variable that are visible to a
given process. When some process attempts to read the value of the shared variable, it will see
either the value v1 or the value v2. Note that the value τ and the set T are the same in both
cases. Let R be the least set such that, for all τ , τ1 ÞÑ v1, . . . , τm ÞÑ vm, τm`1 ÞÑ vm`1, . . . ,
τn ÞÑ vn, T , T 1,

pΣtpτ, τi ÞÑ vi, T q | i P 1 . . .muqq b pΣtpτ, τj ÞÑ vj , T
1q | j P pm` 1q . . . nuq P R,

and the constraints in Definition 2 hold. Given such a bunch, a left hand process would have m
visible writes to the shared variable, τ1 ÞÑ v1, . . . , τm ÞÑ vm, whereas a right hand process have
n´m visible writes, τ 1m`1 ÞÑ v1m`1, . . . , τ 1n ÞÑ v1n. Note that they must agree on the clock value
τ , but can have different values for T and T 1. Unless explicitly distributed, the writes performed
by each process are not visible to the other.

Let Act “ tw1, w2, w3, r1, r2, r3u consist of actions that write and read the values 1, 2, and
3, to and from the shared variable, respectively. Let the modification function be the least such
that

µprv, pτ, τ 1 ÞÑ v, T qq “ Σtpτ ` 1, τi ÞÑ vi, T q | τi ÞÑ vi P T u
µpwv, pτ, τ 1 ÞÑ v1, T qq “ Σtpτ ` 1, τi ÞÑ vi, T Y tτ ÞÑ vuq | τi ÞÑ vi P T Y tτ ÞÑ vuu,

and the constraints in Definition 5 hold. Note that the modification function for action rv and
resource pτ, τ 1 ÞÑ v1, T qq is only defined when v “ v1.

We make use of the distribution functions δ and δ1. The first, δ, copies all the possible writes
to both sides of a b-bunch.

δppΣtpτ, τi ÞÑ vi, T q | i P 1 . . .muq b pΣtpτ, τj ÞÑ vj , T
1q | j P pm` 1q . . . nuqq

“ pΣtpτ, τk ÞÑ vk, T Y T
1q | k P 1 . . . nuq b pΣtpτ, τk ÞÑ vk, T Y T

1q | k P 1 . . . nuq

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 21

The second, δ1, removes all writes except the most recent (in the case of of a tie for the most
recent, we take the smallest value).

δ1ppΣtpτ, τi ÞÑ vi, T q | i P 1 . . .muq b pΣtpτ, τj ÞÑ vj , T
1q | j P pm` 1q . . . nuq

“ pτ, τk ÞÑ vk, tτk ÞÑ vkuq b pτ, τk ÞÑ vk, tτk ÞÑ vkuq,

where k P 1, . . . , n, and for all l P 1 . . . n, τl ď τk and τl “ τk implies vk ď vl.
We define the processes of the system as

E “ E1 :δ E2 :δ1 E3 E1 “ pw1ˆ w2q E2 “ pr0 ` pr1` r2qq ˆ w3 E3 “ r3 ˆ r3.

The process system consists of two parallel components, at each stage of a sequential process.
In the first stage, the components each write different values to the shared variable. In the second
stage, after the writes are distributed one to the other, the first process attempts to read a value,
while the second process writes a new value. In the third stage, after all previous writes have
been synchronized, each attempts to read a value.

Let r “ p1, 0 ÞÑ 0, t0 ÞÑ 0uq, which denotes that, at starting time 1, the variable only has
one possible value, 0, and this value was assigned at time point 0, before be beginning of the
execution. Furthermore, let R1 “ r b r, T 1

2 “ t0 ÞÑ 0, 1 ÞÑ 1u, T 2
2 “ t0 ÞÑ 1, 1 ÞÑ 2u, and

R11 “ pp2, 0 ÞÑ 0, T 1
2 q ‘ p2, 1 ÞÑ 1, T 1

2 qq b pp2, 0 ÞÑ 0, T 2
2 q ‘ p2, 1 ÞÑ 2, T 2

2 qq.

In the first evolution of the system, both processes write different values to the shared variable.
They end up with different possible views of what values the shared variable can take. The first
can see the initial write, and its write of the value 1. The second can see the initial write, and
its write of the value 2.

µpw1, rq “ p2, 0 ÞÑ 0, T 1
2 q ‘ p2, 1 ÞÑ 1, T 1

2 q

r, w1
w1
ÝÝÑ p2, 0 ÞÑ 0, T 1

2 q ‘ p2, 1 ÞÑ 1, T 1
2 q,0

µpw2, rq “ p2, 0 ÞÑ 0, T 2
2 q ‘ p2, 1 ÞÑ 2, T 2

2 q

r, w2
w2
ÝÝÑ p2, 0 ÞÑ 0, T 2

2 q ‘ p2, 1 ÞÑ 2, T 2
2 q,0

r b r, w1ˆ w2
w1¨w2
ÝÝÝÝÑ pp2, 0 ÞÑ 0, T 1

2 q ‘ p2, 1 ÞÑ 1, T 1
2 qq b pp2, 0 ÞÑ 0, T 2

2 q ‘ p2, 1 ÞÑ 2, T 2
2 qq,0ˆ 0

R1, E
w1¨w2
ÝÝÝÝÑ R11, p0ˆ 0q :δ E2 :δ1 E3

In the second evolution of the system, the redistribution function δ is applied, copying all of
the writes to both sides of the concurrent composition. Let T2 “ T 1

2 Y T 2
2 , T3 “ T2 Y t2 ÞÑ 3u,

and
S2 “ pp2, 0 ÞÑ 0, T2q ‘ pp2, 1 ÞÑ 1, T2q ‘ p2, 1 ÞÑ 2, T2qqq
S12 “ pp3, 0 ÞÑ 0, T2q ‘ pp3, 1 ÞÑ 1, T2q ‘ p3, 1 ÞÑ 2, T2qqq
S22 “ pp3, 0 ÞÑ 0, T3q ‘ pp3, 1 ÞÑ 1, T3q ‘ pp3, 1 ÞÑ 2, T3q ‘ p3, 2 ÞÑ 3, T3qqqq,

and R2 “ S2 b S2. Note that δpR11q “ R2. Following the redistribution, the first process reads a
value, and the second writes an additional value, 3.

R11, p0ˆ 0q Û

µpr1, S2q “ S12

p2, 1 ÞÑ 1, T2q, r1
r1
ÝÑ S12,0

p2, 1 ÞÑ 1, T2q ‘ p2, 1 ÞÑ 2, T2q, r1 ` r2
r1
ÝÑ S12,0

S2, pr0 ` pr1` r2qq
r1
ÝÑ S12,0

µpw3, S2q “ S22

S2, w3
w3
ÝÝÑ S22 ,0

R2, pr0 ` pr1` r2qq ˆ w3
r1¨w3
ÝÝÝÑ S12 b S

2
2 ,0ˆ 0

δpR11q, E2 :δ1 E3
r1¨w3
ÝÝÝÑ S12 b S

2
2 , p0ˆ 0q :δ1 E3

R11, p0ˆ 0q :δ E2 :δ1 E3
r1¨w3
ÝÝÝÑ S12 b S

2
2 , p0ˆ 0q :δ1 E3

22 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

In the third evolution of the system, the redistribution function δ1 is applied, which removes
all assignments except for the most recent, which is copied to both sides of the b-bunch. Let
R1

3 “ R2
3p3, 2 ÞÑ 3, t2 ÞÑ 3uq Note that δ1pS12 b S

2
2 q “ R1

3 bR
1
3.

S12 b S
2
2 ,0ˆ 0 Û

R1
3, r3

r3
ÝÑ p4, 2 ÞÑ 3, t2 ÞÑ 3uq,0 R2

3, r3
r3
ÝÑ p4, 2 ÞÑ 3, t2 ÞÑ 3uq,0

δ1pS12 b S
2
2 q, E3

r3¨r3
ÝÝÝÑ p4, 2 ÞÑ 3, t2 ÞÑ 3uq b p4, 2 ÞÑ 3, t2 ÞÑ 3uq,0ˆ 0

S12 b S
2
2 , p0ˆ 0q :δ1 E3

r3¨r3
ÝÝÝÑ p4, 2 ÞÑ 3, t2 ÞÑ 3uq b p4, 2 ÞÑ 3, t2 ÞÑ 3uq,0ˆ 0

Note that the only write to the shared variable left in the state is that of the value 3.
�

The standard notion of bisimulation is that two states in a system are bisimilar if they can
perform the same actions, and, after those reductions, remain bisimilar. LetR and S be resources,
and E and F be agents. Then we have the following:

Definition 22 (Bisimulation). A relation R is a bisimulation relation if, for all closed states
pR,EqRpS, F q, then

‚ if R,E
a
ÝÑ R1, E1, then there exist S1, F 1, such that S, F

a
ÝÑ S1, F 1, and pR1, E1qRpS1, F 1q,

and
‚ if S, F

a
ÝÑ S1, F 1, then there exist R1, E1, such that R,E

a
ÝÑ R1, E1, and pR1, E1qRpS1, F 1q.

�

Let „ Ď CState ˆCState be the union of all bisimulations. The union of any two bisimu-
lations is also a bisimulation. Hence „ is well defined, and a bisimulation.

Note that the bisimulation relation is defined on closed states. While it is possible to define
an operational semantics for open states, an appropriate notion of bisimulation for open states
in a calculus with bunched resources is an open problem.

There are various well-formedness conditions that we use in the remainder of the paper. Note
that all of the following results are for a fixed pAct,Res,R, µ,∆,Hq structure.

Definition 23 (Image-finite). A state R,E is image-finite if it has finitely many derivatives. �

From this point onwards, all states are assumed to be image-finite.
Consider two states R,E and S, F . In order to perform a sequential composition between

these states, we need to take account of how the resource bunches relate to each other. Consider
some state R,E :δ F , and recall the PrefixTwo rule. When the prefixed process E can no
longer be reduced with the accompanying resource bunch R, the resources are transformed by
the application of the redistribution function δ, and the postfixed process F is reduced alongside
the transformed resource bunch δpRq. In order to be able to sensibly consider the prefixing of the
state R,E onto the state S, F (rather than onto the process F), with respect to a redistribution
function δ, we must ensure, for all states R1, E1 to which R,E can reduce, that, if the new state
cannot reduce, then the reordered resource bunch δpR1q is equal to S. Hence, whenever the state
R,E reduces to some state R1, E1 that cannot reduce, the sequential composition R1, E1 :δ F
then behaves as S, F .

Definition 24. A state R,E and a bunched resource S are δ-compatible if, for all transition
sequences R,E Ñ˚ R1, E1, we have that R1, E1 Û implies δpR1q “ S. �

The notion of prefixing of a state R,E onto a state S, F is a technical one, used mostly in
Theorem 27. From this point onwards, for any sequential composition of states R,E and S, F
according to the redistribution function δ, R,E :δ F , we assume that R,E and S are δ-sequence
compatible.

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 23

Consider two pairs of bisimilar states, R1, E1 „ S1, F1 and R2, E2 „ S2, F2. In order to
perform a concurrent composition between these states, it is necessary to take account of the
partiality of the resource model. It may be possible that R1 bR2 is defined, but that S1 b S2 is
not defined. Were that to be the case, we would not have congruence of concurrent composition
with respect to bisimulation.

Example 25. Let Res “ tr, s, t, eu, with empty resource e, and R be the smallest resource
model such that r b t P R and the constraints in Definition 2 hold. Let Act “ ta, bu, and µ be
the smallest modification function µ such that

µpa, rq “ r µpa, sq “ s µpb, tq “ t,

and the constraints in Definition 5 hold. Consider states pr, aq, ps, aq, and pt, bq. We obviously
have that r, a „ s, a. But, we then have that

r b t, aˆ b
a¨b
ÝÝÑ r b t,0ˆ 0 sb t, aˆ b

a¨b
Û,

as sbt is not defined (that is, sbt R Rq. Hence, with this resource model, concurrent composition
is not a congruence.

As a result, we require the following property of our calculi.

Definition 26 („-resource-closed CBRP). A calculus is „-resource-closed if, for all R1, E1, S1,
F1, R2, E2, S2, F2, if R1, E1 „ S1, F1 and R2, E2 „ S2, F2, then R1bR2 (respectively, R1‘R2)
is defined if and only if S1 b S2 (respectively, S1 ‘ S2) is defined.

For the remainder of this section, all calculi are assumed to be „-resource-closed.
We can obtain a useful property for reasoning compositionally: that bisimulation is a congru-

ence; that is, it is an equivalence relation that is respected by the state constructors (excepting
the fixed point constructor).

Theorem 27 (Bisimulation congruence). The relation „ is a congruence for concurrent, non-
deterministic, and sequential composition, and hiding: for all closed states pRi, Eiq, pSi, Fiq,
pR,Eq, pS, F q, if Ri, Ei „ Si, Fi, hpRq, E „ hpSq, F , δ, δ1 P ∆, R1, E1, and R2 are δ-sequence
compatible, S1, F1, S2 are δ1-sequence compatible, and R1 bR2, S1 b S2, R1 ‘R2, and S1 ‘ S2

are defined, then, for any hiding function h P H

R1 bR2, E1 b E2 „ S1 b S2, F1 b F2 R1 ‘R2, E1 ` E2 „ S1 ‘ S2, F1 ` F2

R1, E1 :δ E2 „ S1, F1 :δ1 F2 R, νh.E „ S, νh.E.

Proof. The bisimulation relation „ is the largest bisimulation relation, and contains all other
bisimulation relations. In order to show that the above properties hold, it is sufficient, therefore,
to define a relation R, for which the required properties hold, and to show that the relation R
is a bisimulation.

A congruence is reflexive, symmetric, transitive, and preserved under the above constructions.
Reflexivity, symmetricity property. Let

R “ tppS, F q, pR,Eqq | R,E „ S, F u.

The relation R is a bisimulation if and only if, for all pS, F qRpR,Eq, then the following holds:

if S, F
a
ÝÑ S1, F 1, then there exist b, R1, E1, such that R,E

a
ÝÑ R1, E1, and pS1, F 1qRpR1, E1q; and,

if R,E
a
ÝÑ R1, E1, then there exist S1, F 1, such that S, F

a
ÝÑ S1, F 1, and pS1, F 1qRpR1, E1q.

Consider the case in which S, F
a
ÝÑ S1, F 1. Then, by Definition 22, we have that there exist

R1, E1, such that R,E
a
ÝÑ R1, E1, and pR1, E1q „ pS1, F 1q. Hence we have that pS1, F 1qRpR1, E1q.

Consider the case in which R,E
a
ÝÑ R1, E1. Then, by Definition 22, we have that there exist

S1, F 1, such that S, F
a
ÝÑ S1, F 1, and pR1, E1q „ pS1, F 1q. Hence we have that pS1, F 1qRpR1, E1q.

24 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

Transitivity follows similarly to symmetricity.
(1) Consider concurrent composition. Let

R “ tppR1 b R2, E1 ˆ E2q, pS1 b S2, F1 ˆ F2qq | R1, E1 „ S1, F1, R2, E2 „ S2, F2,
and R1 b R2 and S1 b S2 are definedu.

If R1 bR2, E1ˆE2
a
ÝÑ R11 bR

1
2, E

1
1ˆE

1
2, then the last rule used in the derivation of this reduction

must be the Prod rule. By the Prod rule, we have that R1, E1
a1
ÝÑ R11, E

1
1, R2, E2

a2
ÝÑ R12, E

1
2,

a “ a1 ¨ a2, and R11 b R12 is defined. By Definition 22, we have that there exist S11, F 11, S12, F 12,

such that S1, F1
a1
ÝÑ S11, F

1
1, S2, F2

a2
ÝÑ S12, F

1
2, pR11, E

1
1q „ pS

1
1, F

1
1q, and pR12, E

1
2q „ pS

1
2, F

1
2q. As

R11bR
1
2 is defined, by Definition 26, we have that S11bS

1
2 is defined. By the Prod rule, we have

that S1 b S2, F1 ˆ F2
a1¨a2
ÝÝÝÑ S11 b S12, F

1
1 ˆ F

1
2. As pR11, E

1
1q „ pS

1
1, F

1
1q and pR12, E

1
2q „ pS

1
2, F

1
2q,

we have that pR11 b R12, E
1
1 ˆ E

1
2qRpS11 b S12, F

1
1 ˆ F

1
2q.

The other case is similar. Hence R is closed and a bisimulation.
(2) Consider non-deterministic choice. Let

R “ tppR1 ‘ R2 , E1 ` E2q, pS1 ‘ S2 , F1 ` F2qq | R1, E1 „ S1, F1 and
R2, E2 „ S2, F2

u Y „ .

If R1 ‘ R2, E1`E2
a
ÝÑ R1, E1, then the last rule used in the derivation of this reduction must be

the Sum rule. By the Sum rule, we have that, for some i P t1, 2u, Ri, Ei
a
ÝÑ R1i, E

1
i, R

1, E1 “ R1i, E
1
i,

and R1‘R2 is defined. By Definition 22, we have that there exist S1i, F
1
i , such that Si, Fi

a
ÝÑ S1i, F

1
i

and pR1i, E
1
iq „ pS1i, F

1
i q. By the Sum rule, we have that S1 ‘ S2, F1 ` F2

a
ÝÑ S1i, F

1
i . As

pR1i, E
1
iq „ pS

1
i, F

1
i q, we have that pR1i, E

1
iqRpS1i, F 1i q.

The other case is similar. Hence R is closed and a bisimulation.
(3) Consider sequential composition. Let

R “ tppR1, E1 :δ E2q, pS1, F1 :δ1 F2qq | R1, E1 „ S1, F1, R2, E2 „ S2, F2,
R1, E1, R2 are δ-sequence compatible, S1, F1, S2 are δ1-sequence
compatible, and δ, δ1 P ∆

u Y „ .

If R1, E1 :δ E2
a
ÝÑ R1, E1, then there are two possibilities for the last rule that is used in the

derivation of this reduction.
First, suppose that PrefixOne is the last rule used. Then, we have that R1, E1

a
ÝÑ R11, E

1
1

and δ P ∆. By Definition 22, we have that there exist S11, F 11, such that S1, F1
a
ÝÑ S11, F

1
1 and

pR11, E
1
1q „ pS

1
1, F

1
1q. By Definition 24, we have that R11, E11, and R2 are δ-sequence compatible,

and that S11, F 11, S2 are δ1-sequence compatible. By the PrefixOne rule, we have that S1, F1 :δ1

F2
a
ÝÑ S11, F

1
1 :δ1 F2. We then have that pR11, E

1
1 :δ E2qRpS11, F 11 :δ1 F2q.

Second, suppose that PrefixTwo is the last rule used. Then, we have that R1, E1 Û and
δpR1q, E2

a
ÝÑ R12, E

1
2. By Definition 22, we have that S1, F1 Û. By Definition 24, we have

that δpR1q “ R2 and δ1pS1q “ S2. By Definition 22, we have that there exist S12, F 12, such

that δ1pS1q, F2
a
ÝÑ S12, F

1
2 and pR12, E

1
2q „ pS12, F

1
2q. By the PrefixTwo rule, we have that

S1, F1 :δ1 F2
a
ÝÑ S12, F

1
2. As pR12, E

1
2q „ pS

1
2, F

1
2q, we have that pR12, E

1
2qRpS12, F 12q.

The other case is similar. Hence R is closed and a bisimulation.
(4) Consider the hiding operator. Let

R “ tppR, νh.Eq, pS, νh.F qq | hpRq, E „ hpSq, F u.

If R, νh.E
a
ÝÑ R1, E1, then the last rule used in the derivation of this reduction must be the

Hide rule. Then, we have that hpRq, E
b
ÝÑ R2, E2, R2 “ hpR1q, E1 “ νh.E2, and a “ νh.b. By

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 25

Definition 22, we have that there exist S2, F 2, such that hpSq, F
b
ÝÑ S2, F 2 and R2, E2 „ S2, F 2.

By Definition 10, we have that there exists some S1 such that S2 “ hpS1q. By the Hide rule, we

have that S, νh.F
a
ÝÑ S1, νh.F 2. As hpR1q, E2 „ hpS1q, F 2, we have that pR1, νh.E2qRpS1, νh.F 2q.

The other case is similar. Hence R is closed and a bisimulation. �

As non-determinism ‘forgets’ the resources that are associated with the choice which is not
taken, there is not a functional relationship between the resource bunches of the states related
by a transition relation

a
ÝÑ. There is, however, a functional relationship between some resource

bunch and the resource bunch of its reduced state. This result can be used to prove an expansion
result for our calculus (Lemma 30).

Lemma 28. If R,E
a
ÝÑ R1, E1, then there exists S such that µpa, Sq “ R1.

Proof. By induction over the derivation of R,E
a
ÝÑ R1, E1. Consider which rule is the last used

in the derivation of the transition.
Case Act. By the Act rule, we have that µpa,Rq “ R1. Let S “ R, and we are done with

this case.
Case Sum. By the Sum rule, we have that Ri, Ei

a
ÝÑ R1, E1, for some i P t1, 2u. By the

induction hypothesis, we have that there exists some S such that µpa, Sq “ R1.

Case Prod. By the Prod rule, we have that R1, E1
a1
ÝÑ R11, E

1
1, R2, E2

a2
ÝÑ R12, E

1
2, a “ a1 ¨a2,

R “ R1 bR2, and R1 “ R11 ˆR
1
2. By the induction hypothesis, there exist S1 and S2 such that

µpa1, S1q “ R11 and µpa2, S2q “ R12. By Definition 5, we have that S1 b S2 P R, and hence that
µpa1 ¨ a2, S1 b S2q “ R11 bR

1
2.

Case PrefixOne. By the PrefixOne rule, we have that E “ E1 :δ E2, R1, E1
a
ÝÑ R1, E11,

and E1 “ E11 :δ E2. By the induction hypothesis, we have that there exists some S such that
µpa, Sq “ R1.

Case PrefixTwo. By the PrefixTwo rule, we have that δpRq, F
a
ÝÑ R1, F 1. By the induction

hypothesis, we have that there exists some S such that µpa, Sq “ R1.

Case Hide. By the Hide rule, we have that E “ νh.F , hpRq, F
b
ÝÑ R2, F 1, a “ νh.b,

R2 “ hpR1q, and E1 “ νh.F 1. By the induction hypothesis, we have that there exists some
S1 such that µpb, S1q “ hpR1q. By Definition 10, we have that there exists some S such that
hpSq “ S1. By Definition 13, as µpb, hpSqq “ hpR1q, we have that µpa, Sq “ R1.

Case Rec. By the Rec rule, we have that R,Erfix X.E{Xs
a
ÝÑ R1, E1. By the induction

hypothesis, we have that there exists some S such that µpa, Sq “ R1. �

In order to simplify our examples that include sequential composition, it is helpful to obtain
the following lemma. This describes how a sequential composition, which is annotated by the
function δ, behaves, when its prefix is bisimilar to the zero process.

Lemma 29 (Zero prefix). If R,E „ R,0, then R,E :δ F „ δpRq, F .

Proof. Let
R “ tppδpRq, F q, pR,E :δ F qq | R,E „ R,0uY „ .

Consider the case where δpRq, F
a
ÝÑ R1, F 1. As R,E „ R,0, then we have that R,E Û.

By the PrefixTwo rule, as R,E „ R,0 and δpRq, F
a
ÝÑ R1, F 1, we have that R,E :δ F

a
ÝÑ

R1, F 1. By bisimulation is an equivalence relation we have that R1, F 1 „ R1, F 1, and hence that
pR1, E1qR pR1, E1q.

If R,E :δ F
a
ÝÑ R1, F 1, then there are two possibilities for the last rule that is used in the

derivation of this reduction. If PrefixOne is the last rule used, then, by that rule, we have
that R,0

a
ÝÑ R2, E2 and R1, E1 “ R2, E2 :δ E. This case is clearly impossible, as there are no

transitions for the zero process, irrespective of the accompanying resources. If PrefixTwo is

26 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

the last rule used, then, by that rule, we have that δpRq, F
a
ÝÑ R1, F 1. As bisimulation is an

equivalence relation, we have that R1, F 1 „ R1, F 1, and hence that pR1, E1qR pR1, E1q. �

The combinators of most process calculi can be classified as either static or dynamic. This
classification comes from the operational semantics of said combinators [28]. Static combinators
are those where the combinator is present both before and after the evolution. In our calculus,
the static combinators are concurrent product and hiding. Dynamic combinators are those where
the combinator is present before, but not after, the evolution. Expansion results describe the
behaviour of the static combinators in terms of the dynamic combinators. In order to describe the
behaviour of static combinators, we must be able to describe the behaviour of the combinators’
subcomponents. The fact that we can do so is expressed by the following lemma:

Lemma 30 (State expansion). For all closed states R,E, there exist an indexing set I, actions
ai, resources Ri, and agents E1i such that

R,E „ ΣItRi, ai :id E
1
i | R,E

ai
ÝÑ R1i, E

1
i and µpai, Riq “ R1iu,

where ΣIRi, Ei is syntactic sugar for the state R1‘p. . .‘Rnq . . .q, E1`p. . .`Enq . . .q, if I “ tiu,
then ΣIRi, Ei “ Ri, Ei, and, if I “ H, then ΣIRi, Ei “ e,0.

Proof. Let

R “ tppR,Eq,ΣIpRi, ai :id E
1
iqq | R,E

ai
ÝÑ R1i, E

1
i and µpai, Riq “ R1iuY „ .

Suppose that R,E
a
ÝÑ R1, E1. By Lemma 28, we have that there exists S such that µpa, Sq “

R1. Then, by the definition of ΣItRi, a :id E
1
i | R,E

ai
ÝÑ R1i, E

1
i and µpai, Riq “ R1iu, there exist

j P I, Rj , aj , R
1
j , E

1
j , such that Rj “ S, a “ aj , and R1, E1 “ R1j , E

1
j . By the Act rule, we

have that Rj , aj
aj
ÝÑ R1j ,0. By the PrefixOne rule, we have that Rj , aj :id E

1
j

aj
ÝÑ R1j ,0 :id E

1
j .

By repeated application of the Sum rule, we have that ΣIpRi, ai :id E
1
iq

aj
ÝÑ R1j ,0 :id E

1
j . By

Lemma 29, we have that R1j ,0 :id E
1
j „ R1j , E

1
j , and hence that pR1j ,0 :id E

1
jqRpR1j , E1j).

Suppose that ΣIpRi, ai :id E
1
iq

a
ÝÑ R1, E1. By repeated application of the Sum rule, we have

that there exist j P I, Rj , aj , R
1
j , E

2
j such that Rj , aj :id E

1
j

aj
ÝÑ R1j , E

2
j , a “ aj , and R1, E1 “

R1j , E
2
j . By the Act and PrefixOne rules, we have that E2j “ 0 :id E

1
j . By Lemma 29, we have

that R1j ,0 :id E
1
j „ R1j , E

1
j . By the definition of ΣIpRi, ai :id E

1
iq, we have that R,E

aj
ÝÑ R1j , E

1
j .

As R1j ,0 :id E
1
j „ R1j , E

1
j , we have that pR1j ,0 :id E

1
jqRpR1j , E1jq.

Hence R is closed and a bisimulation. �

Note that in writing this expansion, we assume that all components are defined. If not, then
the expansion does not hold.

Given the behaviour of the subcomponents, in terms of dynamic operators, it is possible to
describe the behaviour of the concurrent product combinator in terms of dynamic operators.

Proposition 31 (Product state expansion). If

R,E „ ΣItRi, ai :id E
1
i | R,E

ai
ÝÑ R1i, E

1
i and µpai, Riq “ R1iu

S, F „ ΣJtSj , bj :id F
1
j | S, F

bj
ÝÑ S1j , F

1
j and µpbj , Sjq “ S1ju,

then
Rb S,E ˆ F „ ΣIˆJpRi b Sj , pai ¨ bjq :id E

1
i ˆ F

1
jq.

Proof. Let

R “ tppRb S,E ˆ F q, pΣIˆJpRi b Sj , pai ¨ bjq :id E
1
i ˆ F

1
jqqquY „,

where I, Ri, ai, R
1
i, E

1
i, J , Sj , bj , S

1
j , and F 1j are defined as above.

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 27

Suppose that RbS,EˆF
c
ÝÑ T,G. Then, the last rule used in the derivation must be the Prod

rule. By the Prod rule, we have that there exist a, R1, E1, b, S1, F 1 such that R,E
a
ÝÑ R1, E1,

S, F
b
ÝÑ S1, F 1, c “ a ¨ b, and T,G “ R1 b S1, E1 ˆ F 1. By Lemma 28, we have that there exist

R2 and S2 such that µpa,R2q “ R1 and µpb, S2q “ S1. By the definition of ΣIpRi, ai :id E
1
iq,

and repeated application of the Sum rule, we have that there exist k P I, Rk, ak, R1k, E2k , such

that R2 “ Rk, ΣIpRi, ai :id E
1
iq

ak
ÝÑ R1k, E

2
k , a “ ak, and R1, E1 “ R1k, E

2
k . By the Act and

PrefixOne rules, we have that E2k “ 0 :id E
1
k. By the definition of ΣJpSj , bj :id F

1
jq, and

repeated application of the Sum rule, we have that there exist l P J , Sl, bl, S
1
l, F

2
l , such that

S2 “ Sl, ΣJpSj , bj :id F
1
jq

bl
ÝÑ S1l, F

2
l , b “ bl, and S1, F 1 “ S1l, F

2
l . By the Act and PrefixOne

rules, we have that F 2l “ 0 :id F
1
l . By Definition 5, as µpak, Rkq “ R1k and µpbl, Slq “ S1l, we have

that µpak ¨ bl, RkbSlq “ R1kbS
1
l. By the Act rule, we have that RkbSl, ak ¨ bl

ak¨bl
ÝÝÝÑ R1kbS

1
l,0.

By the PrefixOne rule, we have that RkbSl, pak ¨ blq :id E
1
kˆF

1
l
ak¨bl
ÝÝÝÑ R1kbS

1
l,0 :id pE

1
kˆF

1
l q.

By repeated application of the Sum rule, we have that ΣIˆJpRi b Sj , pai ¨ bjq :id E
1
i ˆ F

1
jq

ak¨bl
ÝÝÝÑ

0 :id pE
1
k ˆ F 1l q. By Lemma 29, we have that R1k b S1l,0 :id pE

1
k ˆ F 1l q „ R1 b S1, E1 ˆ F 1, and

hence that pR1k b S
1
l,0 :id pE

1
k ˆ F

1
l qqRpR1 b S1, E1 ˆ F 1q.

Suppose that ΣIˆJpRi b Sj , pai ¨ bjq :id E
1
i ˆF

1
jq

c
ÝÑ T,G. By repeated application of the Sum

rule, we have that there exist k P I, l P J such that Rk b Sl, pak ¨ blq :id E
1
k ˆ F

1
l
c
ÝÑ T,G. By the

Act and PrefixOne rules, we have that G “ 0 :id pE
1
k ˆ F

1
l q and µpak ¨ bl, Rk b Slq “ R1k b S

1
l.

By the definition of pΣIˆJpRi b Sj , pai ¨ bjq :id E
1
i ˆ F 1jqq, we have that µpak, Rkq “ R1k, and

µpbl, Slq “ S1l. By the definition of ΣIpRi, ai :id E
1
iq, we have that R,E

ak
ÝÑ R1k, E

1
k. By the

definition of ΣJpSj , bj :id F
1
jq, we have that S, F

bl
ÝÑ S1l, F

1
l . By the Prod rule, we have that

R b S,E ˆ F
ak¨bl
ÝÝÝÑ R1k b S1l, E

1
k ˆ F 1l . By Lemma 29, we have that R1k b S1l,0 :id pE

1
k ˆ F 1l q „

R1k b S
1
l, E

1
k ˆ F

1
l , and hence that pR1k b S

1
l,0 :id pE

1
k ˆ F

1
l qqRpR1k b S1l, E1k ˆ F 1l q.

Hence R is closed and a bisimulation. �

3. Embedding SCRP in CBRP

In order to be able to use CBRP as a replacement for SCRP — as defined in [11, 12, 14] and
sketched in Section 1 — we should be able to embed the latter soundly into the former. The
embedding, for finite states, is described below.

Recall from our introductory discussion that the essential differences between SCRP and
CBRP are the following:

‚ SCRP: resources are assumed to form a (possibly preordered) monoid (with some co-
herence conditions) in which there is a single composition operation. Elements R of the
monoid of resources are then taken together with process terms E in judgements of the
form R,E

a
ÝÑ . . . and R,E (φ;

‚ CBRP: Resources are not assumed to form a monoid. Rather, resource are combined
into bunches using two combining operations, ‘ and b. Bunches of resources R are then
taken together with process terms E in judgements of the form R,E

a
ÝÑ . . . , where ‘ is

used in consort with ` and b is used in consort with ˆ, and R,E (φ.

Formally, SCRP is parametrized by structures pAct,R, µ, νq, where Act is a commutative
monoid of actions and R is a resource monoid [11, 12, 14]. We refer to pAct,R, µ, νq-SCRP just
as we refer to pAct,Res,R, µ,∆,Hq-CBRP.

Consider some pAct,S, µ, νq-SCRP. We define a pA ,Res,R, µ1,∆,Hq-CBRP. Let A be the
carrier set of the monoid Act. Let Res — the carrier set of the resource monoid S — be the set of
atomic resources, the resource model R be the smallest set such that Definition 2 holds, and the

28 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

unit of the resource monoid to be the empty resource. Let the modification function µ1 be the clo-
sure of the SCRP modification function µ under the conditions in Definition 5. The redistribution
functions consist the identity function and those that make n-copies of the input, bunched using
‘ — that is, ∆ “ tn-copy | 1-copy “ id, pn` 1q-copypRq “ R‘n-copypRq, where n P N, 1 ď nu.
We make use of no hiding functions — that is, H “ H. For the remainder of this section, we
assume fixed SCRP and CBRP structures.

Let â denote a SCRP action, r̂ denote a SCRP resource, and Ê denote a SCRP process. Here
we let « denote local (cf. global equivalence [11, 12, 14]) equivalence for SCRP [11, 12, 14],
which is defined as follows:

Definition 32 (Local Bisimulation). The local equivalence relation, «, is the largest binary
relation on closed SCRP states such that the condition below holds.

Let r̂ and ŝ be SCRP resources and Ê and F̂ be SCRP processes. If r̂, Ê « ŝ, F̂ , then

(1) if there is a transition r̂, Ê
â
ÝÑ µpâ, r̂q, Ê1, for any â and Ê1, then there is transition

r̂, F̂
â
ÝÑ µpâ, r̂q, F̂ 1, with µpâ, r̂q, Ê1 « µpâ, r̂q, F̂ 1, for some F̂ 1,

(2) if there is a transition r̂, F̂
â
ÝÑ µpâ, r̂q, F̂ 1, for any â and F̂ 1, then there is a transition

r̂, Ê
â
ÝÑ µpa, r̂q, Ê1, with µpâ, r̂q, Ê1 « µpâ, r̂q, F̂ 1, for some Ê1, and

(3) r̂ “ ŝ. �

�

Let | | denote the number of items in a set. We define our embedding on finite SCRP
states, those that cannot generate infinite traces. An embedding from pAct,S, µ, νq-SCRP into
pA ,Res,R, µ1,∆,Hq-CBRP is then definable. Let ΣIRi, Ei “ e,0, if I “ H, and let ΣIEi “ Ei,
if I “ tiu.

Definition 33 (SCRP embedding). The embedding function J K from finite, closed SCRP states

to finite, closed CBRP states is defined as Jr̂, ÊK “ ΣItr, ai :|Ji|-copy pΣJiE
2
ji
q | Jr̂1i, Ê1iK “

ΣJipr
1
ji
, E2jiqu, where r̂,Ê « r̂,ΣItâi, Ê

1
i | r̂, Ê

âi
ÝÑ r̂1i, Ê

1
iu. �

As we consider only finite SCRP states, there are no infinite traces, and hence this function
is well defined.

Note that any SCRP resource r̂ is an atomic CBRP resource. When such a resource is being
considered as a CBRP resource, we refer to it as r rather than r̂. An example embedding for
mutual exclusion from SCRP to CBRP is given below.

Example 34 (Embedding mutual exclusion). We use the free monoid over the atomic actions

tâ, b̂u, with composition ; and unit 1̂. We write ab for a; b. We use the resource monoid S “
ptê, ŝu, ˝, êq, where

ŝ ˝ ê “ ê ˝ ŝ “ ŝ ê ˝ ê “ ê ŝ ˝ ŝ Ò .

We define the SCRP modification function

µp1̂, êq “ ê µp1̂, ŝq “ ŝ µpâ, ŝq “ ŝ µpb̂, êq “ ê.

We define the SCRP processes

B̂ “ â : B̂1 ` b̂ : B̂ B̂1 “ â : B̂1 ` â : B̂

Ê “ âb : F̂ ` b̂b : Ê F̂ “ âb : F̂ ` âb : Ê.

The following states are bisimilar.

ŝ, B̂ ˆ B̂ « ŝ, Ê ŝ, B̂ ˆ B̂1 « ŝ, F̂ ŝ, B̂1 ˆ B̂ « ŝ, F̂

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 29

Let Res “ te, su be the set of atomic resources, e be the empty resource, R be the smallest
set such that Definition 2 holds, and the modification function µ1 be the smallest that contains
µ and is closed under the conditions in Definition 5. We define the BCRP processes

G “ ppabq :2´copy Hq ` ppbbq :2´copy Gq H “ ppabq :2´copy Hq ` ppabq :2´copy Gq.

As ab and bb (a; b and b; b) are elements of the free monoid, we use them as atomic actions.
By Definition 33, we have that

Jŝ, ÊK “ s,G Jŝ, F̂ K “ s,H

Note that whenever an action x̂ can be performed by ŝ, B̂ ˆ B̂ or ŝ, B̂ ˆ B̂1, the action x can
be performed by s,G or s,H, respectively. �

The standard notion of simulation is that one state in a system simulates another if the former
can perform the same actions as the latter, and, after those reductions, the resulting states of the
former simulate the resulting states of the latter. The simulation relation between CBRP and
SCRP is defined as follows below. Let r̂ and r̂1 be SCRP resources, Ê and Ê1 be closed SCRP
processes, S and S1 be CBRP resources, and F and F 1 be closed CBRP processes.

Definition 35 (Simulation). Let the relation À be the largest relation R such that, for all

pr̂, ÊqR pS, F q, if r̂, Ê
â
ÝÑ r̂1, Ê1, then there exist S1, F 1 such that S, F

a
ÝÑ S1, F 1 and pr̂1, Ê1qR pS1, F 1q.

�

We then have that the embedding of a finite SCRP state simulates that state.

Proposition 36. Let r̂, Ê be a finite SCRP state. Then, r̂, Ê À Jr̂, ÊK.

Proof. Let
R “ tppr̂, Êq, pS, F qq | Jr̂, ÊK „ S, F u.

Suppose that r̂, Ê
â
ÝÑ r̂1, Ê1. By [11, Lemma 11], there exist I, Êi, âi, r̂

1
i, Ê

1
i such that

r̂, Ê « r̂,ΣItâi, Ê
1
i | r̂, Ê

âi
ÝÑ r̂1i, Ê

1
iu. By Definition 32, we have that there exists k P I such that

â “ âk, r̂1 “ r̂1k, and Ê1 “ Ê1k.

By Definition 33, we have that Jr̂, ÊK “ ΣItr, ai :|Ji|-copy pΣJiE
2
ji
q | Jr̂1i, Ê1iK “ ΣJipr

1
ji
, E2jiqu.

By [11, Lemma 2], we have that r̂1 “ µpâ, r̂q. By the definition of the embedding, we have

that µ1pa, rq “ r1. By the Act rule, we have that r, ak
ak
ÝÑ r1,0. By the PrefixOne rule,

we have that r, ak :|Jk|-copy pΣJkE
2
jk
q

ak
ÝÑ r1,0 :|Jk|-copy pΣJkE

2
jk

). By repeated applica-

tion of the Sum rule, we have that Jr̂, ÊK ak
ÝÑ r1,0 :|Jk|-copy pΣJkE

2
jk
q. By Lemma 29, we

have that r1,0 :|Jk|-copy pΣJkE
2
jk
q „ |Jk|-copypr1q,ΣJkE

2
jk

. We straighforwardly have that

|Jk|-copypr1q,ΣJkE
2
jk
“ ΣJkpr

1, E2jkq. By Definition 33, we have that Jr̂1, Ê1K “ ΣJkpr
1, E2jk).

We then have that pr1, E1qRpr1,0 :|Jk|-copy pΣJkE
2
jk
qq, and we are done. �

4. Algebraic properties

In order to reason equationally about processes, it is also useful to establish various algebraic
properties concerning concurrent composition and choice. Notable standard algebraic properties
of process calculi are commutativity and associativity of concurrent composition, that is, R b
S,E ˆ F „ S b R,F ˆ E and R b pS b T q, E ˆ pF ˆGq „ pR b Sq b T, pE ˆ F q ˆG. For the
notion of bisimulation in Definition 22, however, we do not have these properties.

Example 37. Let the set of atomic actions be Act “ ta, bu, the set of atomic resources be
Res “ te, r, su, with empty resource e,

R “ r b psb eq S “ pr b sq b s
E “ aˆ pbˆ 1q F “ paˆ bq ˆ 1,

30 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

and the resource model R be the least set such that R,S P R and Definition 2 holds. Let the
modification function µ : AˆR á R be the least function (under set inclusion of the domain)
such that

µpa, rq “ e µpb, sq “ e,

and Definition 5 holds.
By the operational semantics, we have that

µpa, rq “ e

r, a
a
ÝÑ e,0

µpb, sq “ e

s, b
b
ÝÑ e,0

r b s, aˆ b
a¨b
ÝÝÑ eb e,0ˆ 0

µpb, sq “ e

s, b
b
ÝÑ e,0

µpa, rq “ e

r, a
a
ÝÑ e,0

sb r, bˆ a
b¨a
ÝÝÑ eb e,0ˆ 0

.

Note that, despite the fact that r b s, a ˆ b is the commutation of s b r, b ˆ a, they are not
bisimilar. This is as the former performs the action a ¨ b, and the latter performs the action b ¨ a.

By the operational semantics, we also have that

µpa, rq “ e

r, a
a
ÝÑ e,0

µpb, sq “ e

s, b
b
ÝÑ e,0

µp1, eq “ e

e, 1
1
ÝÑ e,0

sb e, bˆ 1
b¨1
ÝÝÑ eb e,0ˆ 0

r b psb eq, aˆ pbˆ 1q
a¨pb¨1q
ÝÝÝÝÑ eb peb eq,0ˆ p0ˆ 0q

and
µpa, rq “ e

r, a
a
ÝÑ e,0

µpb, sq “ e

s, b
b
ÝÑ e,0

r b s, aˆ b
a¨b
ÝÝÑ eb e,0ˆ 0

µp1, eq “ e

e, 1
1
ÝÑ e,0

pr b sq b e, paˆ bq ˆ 1
pa¨bq¨1
ÝÝÝÝÑ peb eq b e, p0ˆ 0q ˆ 0

.

Note that, despite the fact that rbpsbeq, aˆpbˆ1q can be re-associated to prbsqbe, paˆbqˆ1,
they are not bisimilar. This is as the former performs the action a ¨ pb ¨1q, and the latter performs
the action pa ¨ bq ¨ 1. �

We would like to recover the algebraic properties, and to have that the above pairs of states
are bisimilar. Note that ¨ structure of an action matches the concurrent structure (b and ˆ) of
a state which performs that action. Hence, the notion of bisimulation in Definition 22 requires
that the structure of two bisimilar states be very closely aligned.

In order to do obtain desired algebraic properties, it can be useful to disregard some of the
structure. We define an equivalence relation on actions.

Definition 38 (Action equivalence). The action equivalence relation ” is the least relation
under reflexivity, symmetry, and transitivity such that the following hold:

a ¨ 1 ” a
p1q

a ¨ b ” b ¨ a
p2q

a ¨ pb ¨ cq ” pa ¨ bq ¨ c
p3q a ” a1 b ” b1

a ¨ b ” a1 ¨ b1
p4q.

�

Let R and S be resources, and E and F be agents. Then we define bisimulation, up to the
equivalence relation ”.

Definition 39 (Bisimulation). A relation R” is a bisimulation relation, up to the action equiv-
alence ”, if, for all closed states pR,EqR”pS, F q, then

‚ if R,E
a
ÝÑ R1, E1, then there exist b, S1, F 1, such that a ” b, S, F

b
ÝÑ S1, F 1, and

pR1, E1qR”pS1, F 1q, and

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 31

‚ if S, F
a
ÝÑ S1, F 1, then there exist b, R1, E1, such that a ” b, R,E

b
ÝÑ R1, E1, and

pR1, E1qR”pS1, F 1q.
�

Let „” Ď StateˆState be the union of all bisimulations. The union of any two bisimulations
is also a bisimulation. Hence „” is well defined, and a bisimulation.

With this definition of bisimulation, we can obtain the desired algebraic properties. Note that
the fact that we impose the use of the equivalence relation in the notion of bisimulation does
not mean we must impose its use in the notion of actions modifying resources. Hence, if we
have that r, a „” s, b, then we have that µpa, rq and µpb, sq are defined and that a ” b, but we
do not necessarily have that µpa, sq or µpb, rq are defined. The distinct (but equivalent) actions
can modify the resource components of the two states differently, and the resulting states are
bisimilar. Hence, if R,E „” S, F , if R,E

a
ÝÑ, then we don’t necessarily have that S, F

a
ÝÑ.

Bisimilar pairs perform distinct (but equivalent) transitions that lead to bisimilar states. This is
possible as, unlike in [11, 12, 14], the definition of bisimulation permits bisimilar states to have
different resource components.

Example 40. Recall Example 37. By the operational semantics, we have that

µpa, rq “ e

r, a
a
ÝÑ e,0

µpb, sq “ e

s, b
b
ÝÑ e,0

r b s, aˆ b
a¨b
ÝÝÑ eb e,0ˆ 0

µpb, sq “ e

s, b
b
ÝÑ e,0

µpa, rq “ e

r, a
a
ÝÑ e,0

sb r, bˆ a
b¨a
ÝÝÑ eb e,0ˆ 0

.

As a ¨ b ” b ¨ a and eb e,0ˆ0 Û, we have that rb s, aˆ b „” sb r, bˆ a. Note that, despite the

fact that rb s, aˆ b „” sb r, bˆa and µpa ¨ b, rb sq Ó, it is neither the case that rb s, aˆ b
b¨a
ÝÝÑ

nor that µpb ¨ a, r b sq Ó.
By the operational semantics, we also have that

µpa, rq “ e

r, a
a
ÝÑ e,0

µpb, sq “ e

s, b
b
ÝÑ e,0

µp1, eq “ e

e, 1
1
ÝÑ e,0

sb e, bˆ 1
b¨1
ÝÝÑ eb e,0ˆ 0

r b psb eq, aˆ pbˆ 1q
a¨pb¨1q
ÝÝÝÝÑ eb peb eq,0ˆ p0ˆ 0q

and
µpa, rq “ e

r, a
a
ÝÑ e,0

µpb, sq “ e

s, b
b
ÝÑ e,0

r b s, aˆ b
a¨b
ÝÝÑ eb e,0ˆ 0

µp1, eq “ e

e, 1
1
ÝÑ e,0

pr b sq b e, paˆ bq ˆ 1
pa¨bq¨1
ÝÝÝÝÑ peb eq b e, p0ˆ 0q ˆ 0

.

As a ¨ pb ¨ 1q ” pa ¨ bq ¨ 1, e b pe b eq,0 ˆ p0 ˆ 0q Û, and pe b eq b e, p0 ˆ 0q ˆ 0 Û, we
have that r b ps b eq, a ˆ pb ˆ 1q „” pr b sq b e, pa ˆ bq ˆ 1. Note that, despite the fact that
r b psb eq, aˆ pbˆ 1q „” pr b sq b e, paˆ bq ˆ 1 and µpa ¨ pb ¨ 1q, r b psb eqq Ó, it is neither the

case that r b psb eq, aˆ pbˆ 1q
pa¨bq¨1
ÝÝÝÝÑ nor that µppa ¨ bq ¨ 1, r b psb eqq Ó. �

The structure of actions that a state can perform is directed by the concurrent structure
of that state. When bisimulation is defined up to action equivalence, two bisimilar states do
not necessarily perform exactly the same actions, but that they can always perform equivalent
actions. In the definition of bisimulation up to equivalence (Definition 39), if R,E „” S, F , the
resources R and S can be entirely unrelated, both in their structure and their constituent atomic

32 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

resources. The key thing thing is that both states can perform equivalent actions, and remain
bisimilar (up to action equivalence).

The definition of bisimulation up to the action equivalence relation, ”, enables us to prove
various algebraic properties of our calculus.

Proposition 41 (Algebraic properties). For all bunched resources R,S, T P R and agents
E,F,G,

R ‘ S,E ` F „” S ‘ R,F ` E R ‘ R,E ` F „” R ‘ R,F ` E
R ‘ S,E ` E „” S ‘ R,E ` E R ‘ S,E ` 0 „” R,E
R ‘ pS ‘ T q, E ` pF `Gq „” pR ‘ Sq ‘ T, pE ` F q `G

R b S,E ˆ F „” S b R,F ˆ E R b R,E ˆ F „” R b R,F ˆ E
R b S,E ˆ E „” S b R,E ˆ E R b S,E ˆ 1 „” R,E
R b S,E ˆ 0 „” S,0
R b pS b T q, E ˆ pF ˆGq „” pR b Sq b T, pE ˆ F q ˆG

R b pS ‘ T q, E ˆ pF `Gq „” pR b Sq ‘ pR b T q, pE ˆ F q ` pE ˆGq.

Proof. Straightforward, through the definition of the relevant bisimulations, by the operational
semantics and Definition 38. As an illustration, we prove that re-associations of concurrent
compositions of states are bisimilar.

Let

R” “ tppRb pS b T q, E ˆ pF ˆGqq, ppRb Sq b T, pE ˆ F q ˆGqq | E,F,G are agents u.

Suppose that R b pS b T q, E ˆ pF ˆGq
d
ÝÑ U,H. By repeated application of the Prod rule,

there exist a, b, c, R1, S1, T 1, E1, F 1, G1, such that d “ a ¨ pb ¨ cq, U,H “ R1 b pS1 b T 1q, E1 ˆ

pF 1 ˆ G1q, R,E
a
ÝÑ R1, E1, S, F

b
ÝÑ S1, F 1. and T,G

c
ÝÑ T 1, G1. By Definition 2, we have that

pRbSqbT is defined. By further application of the Prod rule, pRbSqbT, pEˆF qˆG
pa¨bq¨c
ÝÝÝÝÑ

pR1 b S1q b T 1, pE1 ˆ F 1q ˆ G1. By Definition 38, a ¨ pb ¨ cq ” pa ¨ bq ¨ c. We then have that
pR1 b pS1 b T 1q, E1 ˆ pF 1 ˆG1qqR”ppR1 b S1q b T 1, pE1 ˆ F 1q ˆG1q.

The other case is similar. Hence R” is closed and a bisimulation. �

Recall the semaphore resource model in Example 3. Suppose some action a and modification
function µ such that µpa, sq “ s. We then have that sb e, aˆ 1 „” eb s, 1ˆ a, as

µpa, sq “ s

s, a
a
ÝÑ s,0

µp1, eq “ e

e, 1
1
ÝÑ e,0

sb e, aˆ 1
a¨1
ÝÝÑ sb e,0ˆ 0

µp1, eq “ e

e, 1
1
ÝÑ e,0

µpa, sq “ s

s, a
a
ÝÑ s,0

eb s, 1ˆ a
1¨a
ÝÝÑ eb s,0ˆ 0

,

and a ¨ 1 ” 1 ¨ a. We do not, however, have that sb e, aˆ 1 „” eb s, aˆ 1. If we commute the
resource component of a state, but not the process component, then the resulting state is not
necessarily bisimilar to the original state.

Recall the resource model and modification function in Example 6. We trivially have that
2b 4, iˆ 1 „” 2b 4, 1ˆ i as they can perform equivalent actions, i ¨ 1 and 1 ¨ i, and are bisimilar
thereafter (they can perform no behaviour).

It is possible to retain the congruence results for bisimulation up to equivalence. In order to
prove that hiding to be a congruence operator, we require that hiding functions preserve action
equivalence, and evolve our notion of „-resource closed calculi.

Definition 42. A hiding function on resources h preserves action equivalence if, for all a, b P A,
if a ” b, then νh.a ” νh.b. �

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 33

We define a notion of „”-resource-closed calculi.

Definition 43 („”-resource-closed CBRP). A calculus is „”-resource-closed if, for all R1, E1,
S1, F1, R2, E2, S2, F2, R1, E1 „” S1, F1, R2, E2 „” S2, F2, then R1bR2 (respectively, R1‘R2)
is defined if and only if S1 b S2 (respectively, S1 ‘ S2) is defined.

We can then prove that bisimulation up to equivalence is a congruence.

Theorem 44 (Bisimulation congruence). Suppose a „”-resource-closed calculus. The relation
„” is a congruence for concurrent, non-deterministic, and sequential composition, and hiding:
for all closed states pRi, Eiq, pSi, Fiq, pR,Eq, pS, F q, if Ri, Ei „” Si, Fi, hpRq, E „” hpSq, F ,
δ, δ1 P ∆, R1, E1, and R2 are δ-sequence compatible, S1, F1, S2 are δ1-sequence compatible, and
R1 b R2, S1 b S2, R1 ‘ R2, and S1 ‘ S2 are defined, then, for any hiding function h P H that
preserves action equivalence

R1 bR2, E1 b E2 „” S1 b S2, F1 b F2 R1 ‘R2, E1 ` E2 „” S1 ‘ S2, F1 ` F2

R1, E1 :δ E2 „” S1, F1 :δ1 F2 R, νh.E „” S, νh.E.

Proof. The bisimulation relation „” is the largest bisimulation relation, and contains all other
bisimulation relations. In order to show that the above properties hold, it is sufficient, therefore,
to define a relation R”, for which the required properties hold, and to show that the relation
R” is a bisimulation.

A congruence is reflexive, symmetric, transitive, and preserved under the above constructions.
Reflexivity, symmetricity, and transitivity are straightforward to observe.

(1) Consider concurrent composition. Let

R” “ tppR1 b R2, E1 ˆ E2q, pS1 b S2, F1 ˆ F2qq | R1, E1 „” S1, F1 and
R2, E2 „” S2, F2u.

If R1 bR2, E1ˆE2
a
ÝÑ R11 bR

1
2, E

1
1ˆE

1
2, then the last rule used in the derivation of this reduction

must be the Prod rule. By the Prod rule, we have that R1, E1
a1
ÝÑ R11, E

1
1, R2, E2

a2
ÝÑ R12, E

1
2,

and a “ a1 ¨a2. By Definition 22, we have that there exist b1, S11, F 11, b2, S12, F 12, such that a1 ” b1,

a2 ” b2, S1, F1
b1
ÝÑ S11, F

1
1, S2, F2

b2
ÝÑ S12, F

1
2, pR11, E

1
1q „” pS

1
1, F

1
1q, and pR12, E

1
2q „” pS

1
2, F

1
2q.

By the Prod rule, we have that S1 b S2, F1 ˆ F2
b1¨b2
ÝÝÝÑ S11 b S12, F

1
1 ˆ F 12. By Definition 38,

we have that a1 ¨ a2 ” b1 ¨ b2. As pR11, E
1
1q „” pS

1
1, F

1
1q and pR12, E

1
2q „” pS

1
2, F

1
2q, we have that

pR11 b R12, E
1
1 ˆ E

1
2qR”pS11 b S12, F

1
1 ˆ F

1
2q.

The other case is similar. Hence R” is closed and a bisimulation.
(2) Consider non-deterministic choice. Let

R” “ tppR1 ‘ R2 , E1 ` E2q, pS1 ‘ S2 , F1 ` F2qq | R1, E1 „ S1, F1 and
R2, E2 „ S2, F2

u Y „ .

If R1 ‘ R2, E1 ` E2
a
ÝÑ R1, E1, then the last rule used in the derivation of this reduction must

be the Sum rule. By the Sum rule, we have that, for some i P t1, 2u, Ri, Ei
a
ÝÑ R1i, E

1
i and

R1, E1 “ R1i, E
1
i. By Definition 22, we have that there exist b, S1i, F

1
i , such that Si, Fi

b
ÝÑ S1i, F

1
i ,

a ” b, and pR1i, E
1
iq „” pS

1
i, F

1
i q. By the Sum rule, we have that S1 ‘ S2, F1 ` F2

b
ÝÑ S1i, F

1
i . As

pR1i, E
1
iq „” pS

1
i, F

1
i q, we have that pR1i, E

1
iqR”pS1i, F 1i q.

The other case is similar. Hence R” is closed and a bisimulation.

34 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

(3) Consider sequential composition. Let

R “ tppR1, E1 :δ E2q, pS1, F1 :δ1 F2qq | R1, E1 „ S1, F1, R2, E2 „ S2, F2,
R1, E1, R2 are δ-sequence compatible, S1, F1, S2 are δ1-sequence
compatible, and δ, δ1 P ∆

u Y „ .

If R1, E1 :δ E2
a
ÝÑ R1, E1, then there are two posssibilities for the last rule that is used in the

derivation of this reduction.
First, suppose that PrefixOne is the last rule used. Then, we have that R1, E1

a
ÝÑ R11, E

1
1

and δ P ∆. By Definition 22, we have that there exist b, S11, F 11, such that S1, F1
b
ÝÑ S11, F

1
1,

a ” b, and pR11, E
1
1q „” pS

1
1, F

1
1q. By Definition 24, we have that R11, E11, and R2 are δ-sequence

compatible, and that S11, F 11, S2 are δ1-sequence compatible. By the PrefixOne rule, we have

that S1, F1 :δ1 F2
b
ÝÑ S11, F

1
1 :δ1 F2. We then have that pR11, E

1
1 :δ E2qR”pS11, F 11 :δ1 F2q.

Second, suppose that PrefixTwo is the last rule used. Then, we have that R1, E1 Û and
δpR1q, E2

a
ÝÑ R12, E

1
2. By Definition 22, we have that S1, F1 Û. By Definition 24, we have that

δpR1q “ R2 and δ1pS1q “ S2. By Definition 22, we have that there exist b, S12, F 12, such that

δ1pS1q, F2
b
ÝÑ S12, F

1
2, a ” b, and pR12, E

1
2q „” pS

1
2, F

1
2q. By the PrefixTwo rule, we have that

S1, F1 :δ1 F2
b
ÝÑ S12, F

1
2. As pR12, E

1
2q „” pS

1
2, F

1
2q, we have that pR12, E

1
2qR”pS12, F 12q.

The other case is similar. Hence R” is closed and a bisimulation.
(4) Consider the hiding operator. Let

R” “ tppR, νh.Eq, pS, νh.F qq | hpRq, E „ hpSq, F u.

If R, νh.E
a
ÝÑ R1, E1, then the last rule used in the derivation of this reduction must be the

Hide rule. Then, we have that hpRq, E
b
ÝÑ R2, E2, R2 “ hpR1q, E1 “ νh.E2, and a “ νh.b.

By Definition 22, we have that there exist c, S2, F 2, such that hpSq, F
c
ÝÑ S2, F 2, b ” c, and

R2, E2 „” S2, F 2. By Definition 10, we have that there exists some S1 such that S2 “ hpS1q.

By the Hide rule, we have that S, νh.F
d
ÝÑ S1, νh.F 2 and d “ νh.c. By Definition 42, as b ” c,

we have that νh.b ” νh.c. As hpR1q, E2 „” hpS
1q, F 2, we have that pR1, νh.E2qR”pS1, νh.F 2q.

The other case is similar. Hence R” is closed and a bisimulation. �

5. A modal logic of resources and processes

In this section, we define a modal logic, here called MBI. We reuse the name MBI from
[11, 12, 14], where it denotes a logic with the same propositional formulae, the semantics of
which is given in terms of the transition relation for the calculus SCRP, sketched in Section 1.

Let Prop be a countable set of propositional letters denoting atomic propositions. Let p, q,
etc., denote elements of Prop. Recall, from Section 2, that A, with elements a, b, etc., denotes
a set of actions.

Definition 45 (Propositional formulae). We assume a set Prop of propositional letters, with
elements denoted p, q, etc.. Then the propositional formulae of MBI are given by the following
grammar:

φ ::“ p | K | J | φ_ φ | φ^ φ | φÑ φ | xayφ | rasφ
| I | φ ˚ φ | φ ´́˚ φ | xayνφ |ν rasφ

�

It is straightforward to add both additive and multiplicative quantifiers — D, @ and Dν , @ν , as
described in [11, 14] — to the logic. Their definition and theoretical treatment works as described
in [11, 14] and repeating them here would add little to the understanding provided.

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 35

R,E (p iff R,E P Vppq
R,E (K never
R,E (J always
R,E (φ iff R,E * φ
R,E (φ1 _ φ2 iff R,E (φ1 or R,E (φ2
R,E (φ1 ^ φ2 iff R,E (φ1 and R,E (φ2
R,E (φ1 Ñ φ2 iff R,E (φ1 implies R,E (φ2
R,E (xayφ iff there exist R1, E1, such that R,E

a
ÝÑ R1, E1, and R1, E1 (φ

R,E (rasφ iff for all R1, E1, if R,E
a
ÝÑ R1, E1, then R1, E1 (φ

R,E (I iff R,E „ e,1
R,E (φ1 ˚ φ2 iff there exist R1, R2, E1, E2, such that R,E „ R1 b R2, E1 ˆ E2,

R1, E1 (φ1, and R2, E2 (φ2
R,E (φ1 ´́˚ φ2 iff for all S, F, if S, F (φ1, then R b S,E ˆ F (φ2
R,E (xayνφ iff there exist S, F,R1, S1, E1, F 1, such that R b S,E ˆ F

a
ÝÑ

R1 b S1, E1 ˆ F 1 and R1 b S1, E1 ˆ F 1 (φ

R,E (rasνφ iff for all S, F,R1, S1, E1, F 1, if R b S,E ˆ F
a
ÝÑ R1 b S1, E1 ˆ F 1,

then R1 b S1, E1 ˆ F 1 (φ.

Figure 2. Satisfaction Relation

The additive modalities are the standard necessarily and possibly connectives familiar from
modal logics, in particular Hennessy–Milner logics for process algebras. As such, they implicitly
use meta-theoretic quantification to make statements about reachable states. The connectives
I, ˚, and ´́˚ are the multiplicative conjunction, implication and unit, respectively.

The remainder of the section is structured as follows. In Section 5.1, we describe a semantics
for MBI defined in terms of the transitions of the resource–process terms and of the bisimulation
relation „ described in Section 2. We prove the Hennessy–Milner completeness result for the
logic with this semantics. In Section 5.2, we describe a semantics for MBI defined in terms of the
transitions of the resource–process terms described in Section 2 and of the bisimulation relation
„” described in Section 4. We sketch proofs of the Hennessy–Milner completeness result for the
logic with this semantics.

5.1. MBI with „-semantics. In this section, we define a semantics for MBI in terms of the
transitions of the resource–process terms and of the bisimulation relation„ described in Section 2.
We prove the Hennessy–Milner completeness result for the logic with this semantics.To illustrate
this, we provide an example that demonstrates how the concurrent composition of some bisimilar
states, in SCRP, is not bisimilar, and how the corresponding states in our calculus can be
concurrently composed in a way that preserves bisimilarity.

We define how atomic propositions are interpreted with respect to resource–process states.
The mathematical structure on which we interpret MBI is the set CState of states generated
by resources and processes. Recall that each state generates a transition structure, via the
operational semantics rules (Figure 1). We define the interpretation of a formula at a state to be
the interpretation of that formula at the corresponding transition structure in the ambient set
of states. For the purposes of this section pAct,Res,R, µ,∆,Hq is fixed and „-resource-closed.
Recall the bisimulation relation „. A set Σ of states is said to be „-closed if it satisfies the
property

R,E P Σ and R,E „ S, F implies S, F P Σ,

for all states R,E and S, F .

36 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

We now proceed to give an interpretation of the logical calculus on the set CState of closed
states. Consider the relation „ restricted to CState. Let P„pCStateq be the set of all „-closed
sets of closed states. A valuation is a function

V : Prop Ñ P„pCStateq

from the set of propositional letters to „-closed subsets of the set of all states. Every valuation
extends in a canonical way to an interpretation for MBI-formulae, the satisfaction relation for
which is given in Figure 2, and in which every process that appears is required to be an agent. A
model for MBI consists of the set of closed states together with such an interpretation. Satisfac-
tion in a given model is then denoted R,E (φ, read as ‘for the given model, the state R,E has
property φ’. Clauses for the quantifiers can be adapted directly from the ones given in [11, 14].

We define the notion of logical equivalence as follows:

Definition 46 (Logical equivalence). R,E ”MBI S, F if and only if, for any model of MBI and
all φ, R,E (φ if and only if S, F (φ. �

With this set-up, we can prove the forward direction of the Hennessy–Milner completeness
theorem.

Theorem 47. If R,E „ S, F , then R,E ”MBI S, F .

Proof. By induction over the structure of the satisfaction relation, R,E (φ.
Case φ “ p. As V is a „-closed set, we have that if R,E P Vppq and R,E „ S, F , then

S, F P Vppq. Hence we have that S, F (p.
Case φ “ K. As the premisses assume R,E (K, we have a contradiction and can disregard

this case.
Case φ “ J. We have that S, F (J, straightforwardly.
Case φ “ φ1 _ φ2. By the induction hypothesis, we know that S, F (φ1 or S, F (φ2. Hence

we have that S, F (φ1 _ φ2.
Case φ “ φ1 ^ φ2. By the induction hypothesis, we know that S, F (φ1 and S, F (φ2.

Hence we have that S, F (φ1 ^ φ2.
Case φ “ φ1 Ñ φ2. By the induction hypothesis, we know that S, F (φ1 whenever R,E (φ1,

and S, F (φ2 whenever R,E (φ2. Hence we have that S, F (φ1 Ñ φ2.
Case φ “ xay ψ. As there exist R1, E1 such that R,E

a
ÝÑ R1, E1, by the definition of bisimu-

lation, there exist S1, F 1 such that S, F
a
ÝÑ S1, F 1, and R1, E1 „ S1, F 1. As R1, E1 (ψ, by the

induction hypothesis, we have that S1, F 1 (ψ, and hence we have that S, F (xay ψ.

Case φ “ rasψ. Suppose some S1, F 1 such that S, F
a
ÝÑ S1, F 1. By the definition of bisimulation,

there exist R1, E1, such that R,E
a
ÝÑ R1, E1. By the hypothesis, we have that R1, E1 (ψ. By the

induction hypothesis, we have that S1, F 1 (ψ. Hence we have that S, F (rasψ.
Case φ “ I. By Theorem 27, as e,1 „ R,E and R,E „ S, F , we have that S, F „ e,1. Hence

we have that S, F (I.
Case φ “ φ1 ˚φ2. By Theorem 27, as R1bR2, E1ˆE2 „ R,E and R,E „ S, F , we have that

R1 bR2, E1 ˆ E2 „ S, F . As R1, E1 (φ1 and R2, E2 (φ2, we have that S, F (φ1 ˚ φ2.
Case φ “ φ1 ´́ ˚ φ2. Suppose some T , G such that T,G (φ2 and S b T is defined.

As R,E „ S, F and T,G „ T,G, by Definition 26, we have that RbT is defined. By the hypoth-
esis, we have that RbT,EˆG (φ2. By Theorem 27, we have that RbT,EˆG „ SbT, F ˆG.
By the induction hypothesis, we have that SbT, FˆG (φ2. Hence, we have that S, F (φ1 ´́̊φ2.

Case φ “ xayνψ. By the hypothesis, there exist T , G, R1, T 1, E1, G1 such that R b T,E ˆ

G
a
ÝÑ R1 b T 1, E1 ˆ G1 and R1 b T 1, E1 ˆ G1 (ψ. As R,E „ S, F , T,G „ T,G, and R b T

is defined, by Definition 26, we have that S b T is defined. By Theorem 27, we have that
Rb T,E ˆG „ S b T, F ˆG. By the definition of bisimulation, there exist S1, T 2, F 1, G2 such

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 37

that SbT, F ˆG
a
ÝÑ S1bT 2, F 1ˆG2 and R1bT 2, E1ˆG2 „ S1bT 1, F 1ˆG1. By the induction

hypothesis, we have that S1 b T 2, F 1 ˆG2 (ψ. Hence we have that S, T (xayνψ.

Case φ “ rasνψ. Suppose some T , G, S1, T 1, F 1, G1, such that S b T, FˆG
a
ÝÑ S1 b T 1, F 1ˆG1.

As R,E „ S, F , T,G „ T,G, and S b T is defined, by Definition 26, we have that R b T is
defined. By Theorem 27, we have that R b T,E ˆ G „ S b T, F ˆ G. By the definition of
bisimulation, we have that there exist R1, T 2, E1, G2, such that RbT,EˆG

a
ÝÑ R1bT 2, E1ˆG2

and R1bT 2, E1ˆG2 „ S1 b T 1, F 1ˆG1. By the hypothesis, we have that R1bT 2, E1ˆG2 (ψ. By
the induction hypothesis, we have that S1bT 1, F 1ˆG1 (ψ. Hence we have that S, T (rasνψ. �

Bisimilar states satisfy the same logical statements for the entire logic, including multiplicative
implication and the multiplicative modalities. To prove this, it is necessary for bisimulation to
be a congruence with respect to concurrent composition. In the set-up of[11, 14], that is not the
case. There, the operational semantics of concurrent composition does not preserve the allocation
of resources to processes. Consequently, Theorem 47 fails to hold for xayν , rasν , and ´́˚, which
require congruence.

We demonstrate, with an example, that SCRP bisimulation is not a congruence, and hence
how bisimilar SCRP states can satisfy different logical statements. Recall the ˆ̈ notation from
Section 3, which is used to denote SCRP resources, actions, and processes.

We use the free monoid over the atomic action tâu, with composition ; and unit 1̂. We write

â1̂ for â; 1̂. We use the resource monoid S “ ptê, ŝu, ˝, êq, where

ŝ ˝ ê “ ê ˝ ŝ “ ŝ ê ˝ ê “ ê ŝ ˝ ŝ Ò .

We define the SCRP modification function

µp1̂, êq “ ê µp1̂, ŝq “ ŝ µpâ, ŝq “ ŝ.

We make use of the following SCRP operational rules:

r̂, â : Ê
â
ÝÑ µpâ, r̂q, Ê

Act
r̂, Êi

â
ÝÑ r̂1, Ê1i

r̂, Ê1 ` Ê2
â
ÝÑ r̂1, Ê1i

i P t1, 2u Sum

r̂ “ r̂1 ˝ r̂2 r̂1, Ê1
â1
ÝÑ r̂11, Ê

1
1 r̂2, Ê2

â2
ÝÑ r̂12, Ê

1
2

r̂, Ê1 ˆ Ê2
â1â2
ÝÝÝÑ r̂11 ˝ r̂

1
2, Ê

1
1 ˆ Ê

1
2

Prod.

Consider the processes

Ê “ â : 0̂` 1̂ : 0̂ F̂ “ 1̂ : 0̂.

By Definition 32, we have that ê, Ê « ê, F̂ , as

ê, Ê
1̂
ÝÑ ê, 0̂ ê, F̂

1̂
ÝÑ ê, 0̂ ê, Ê

â
Û ê, F̂

â
Û .

Similarly, we have that ŝ, F̂ « ŝ, F̂ .
It is not the case, however, that ê ˝ ŝ, Ê ˆ F̂ « ê ˝ ŝ, F̂ ˆ F̂ . Note that ê ˝ ŝ “ ŝ, and â; 1̂ “ â.

We can show the reduction

ŝ “ ŝ ˝ ê

µpâ, ŝq “ ŝ

ŝ, â : 0̂
â
ÝÑ ŝ, 0̂

ŝ, â : 0̂` 1̂ : 0̂
â
ÝÑ ŝ, 0̂

µp1̂, êq “ ê

ê, 1̂ : 0̂
1̂
ÝÑ ê, 0̂

ŝ, Ê ˆ F̂
â;1̂
ÝÝÑ ŝ, 0̂ˆ 0̂

.

38 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

We cannot, however, derive that ê ˝ ŝ, F̂ ˆ F̂
â
ÝÑ. This difference can be displayed in the logic.

We make use of the following fragment of the SCRP MBI logical interpretation:

r̂, Ê (K never

r̂, Ê (râs φ iff for all r̂1, Ê1, if r̂, Ê
â
ÝÑ r̂1, Ê1, then r̂1, Ê1 (φ,

r̂, Ê (φ ´́˚ ψ iff for all ŝ, F̂ , if ŝ, F̂ (φ, then r̂ ˝ ŝ, Ê ˆ F̂ (ψ.

Under the SCRP operational semantics, we have the following: first, ŝ, F̂ (râsK, as it cannot

perform an â action; second, as ê ˝ ŝ, Ê ˆ F̂
â
ÝÑ, we can show that ê, Ê * prâsKq ´́˚ prâsKq.

Suppose there exist r̂, Ĝ such that r̂, Ĝ (râsK and ê ˝ r̂, Ê ˆ Ĝ
â
ÝÑ. By the definition of the

resource monoid, the modification function, and [11, Lemma 2], we have that r̂ “ ŝ. By the

SCRP Prod rule, there exists some Ĝ1 such that r̂, Ĝ
â
ÝÑ r̂, Ĝ1, which contradicts the assumption

that r̂, Ĝ (râsK. Hence, there exist no r̂, Ĝ such that r̂, Ĝ (râsK and ê ˝ r̂, Ê ˆ Ĝ
â
ÝÑ. Then,

we have that ê, F̂ (prâsKq ´́˚ prâsKq. As a result, we can then differentiate between ê, Ê and

ê, F̂ in the logic.
By contrast, in our calculus, concurrent composition is a congruence with respect to bisimula-

tion. As a demonstration of this congruence property, we describe how we can model the above
example in our calculus. Let Act “ tau, Res “ ts, eu, with empty resource e, and R be the
smallest set such that Definition 2 holds. Let the modification function µ1 be the smallest such
that µ1pa, sq “ s and that is closed under the conditions in Definition 5. Consider the processes

E “ a` 1 F “ 1.

We have that e‘ e, E „ e, F , as

e‘ e, E
1
ÝÑ e,0 e, F

1
ÝÑ e,0 e, E

a
Û e, F

a
Û .

It is the case that pe‘ eq b s, E ˆF „ eb s, F ˆF . This is as neither can perform an action
that is equivalent to a. We demonstrate this by witnessing the failed derivations.

µpa, eq Ò

e, a
a
Û

e‘ e, a` 1
a
Û

µp1, eq “ e

s, F
1
ÝÑ e,0

pe‘ eq b s, E ˆ F
a¨1
Û

e, 1
a
Û

µp1, sq “ s

s, 1
1
ÝÑ s,0

eb s, F ˆ F
a¨1
Û

.

As a result, we have that both e‘ e, E (prâsKq ´́˚ prâsKq and e, F (prâsKq ´́˚ prâsKq.
Note that there exist analagous examples that demonstrate how bisimilar SCRP states do not

satisfy logical properties defined in terms of either of the multiplicative modalities, xayν or rasν .
Hence, in [11, 14], the Hennessy–Milner completeness results only hold for the fragment of the
logic excluding xayν , rasν , and ´́˚.

The reverse direction of the Hennessy-Milner completeness theorem relies on image-finiteness.

Theorem 48. If R,E ”MBI S, F , then R,E „ S, F .

Proof. Supposing that R,E ”MBI S, F , we require to show that R,E „ S, F . Since „ is the
largest relation closed under the conditions in Definition 22, it suffices to show that ”MBI is
closed under these conditions. That is (wlog), assuming that R,E

a
ÝÑ R1, E1, for some a P A, we

have to exhibit S1, F 1 such that S, F
a
ÝÑ S1, F 1 and R1, E1 ”MBI S

1, F 1.
Let F “ tS1, F 1 | S, F

a
ÝÑ S1, F 1u. If F is empty, then R,E (xayJ and S, F * xayJ,

contradicting R,E ”MBI S, F . Hence F is non-empty, and by the image-finiteness assumption,
F “ tSi, Fi | 1 ď i ď n, for some finite n. Assume for contradiction that R1, E1 ıMBI Si, Fi,
for all 1 ď i ď n. Thus there exist formulas φ1, . . . , φn such that R1, E1 |ù φi but Si, Fi ­|ù φi,

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 39

for all i. Hence R,E |ù xaypφ1 ^ . . . ^ φnq and S, F * xaypφ1 ^ . . . ^ φnq, again contradicting
R,E ”MBI S, F . Hence indeed R1, E1 ”MBI Si, Fi, for some Si, Fi P F , as required. �

We conclude this section, adopting the evident logical notation, with a useful equivalence
between the additive and multiplicative modalities. The key point to note is the role of ´́˚ in
introducing additional resources: in its absence, the modalities are distinct.

Proposition 49. For any model of MBI, we have the following logical equivalences:

(1) xayνφ)(pJ ´́˚ xayφq; and
(2) rasνφ)(J ´́˚ rasφ.

Proof.
(1) We show that, for allR,E we have thatR,E (xayνφ if and only ifR,E (

`

J ´́˚ pxayφq
˘

.
Suppose that R,E (xayνφ. By the interpretation relation, there exist S, F , R1, S1, E1,

F 1, such that R b S,E ˆ F
a
ÝÑ, R1 b S1, E1 ˆ F 1 and R1 b S1, E1 ˆ F 1 (φ. Suppose, for a

contradiction, that R,E (J ´́˚ pxayφq. By the interpretation relation, for all T and G, if
T,G (J, then Rb T,E ˆG (pxayφq, and hence there do not exist R1, T 1, E1, G1, such that

RbT,EˆG
a
ÝÑ R1bT 1, E1ˆG1 and R1 b T 1, E1ˆG1 (φ. But we have already shown that S, F ,

S1, and F 1 witness such a transition, equivalence, and logical entailment. Hence our supposition
must be false, and we are done.

Conversely, suppose that R,E (
`

J ´́˚ pxayφq
˘

. By the interpretation relation, we have
that R,E * J ´́˚ pxayφ, and hence that there exist some S and F such that S, F (J and
Rb S,E ˆ F * pxayφq. Again, by the interpretation relation, we have that there exist R1, S1,

E1, and F 1 such that Rb S,E ˆ F
a
ÝÑ R1 b S1, E1 ˆ F 1 and R1 b S1, E1 ˆ F 1 (φ. Hence we have

that R,E (xayνφ.
(2) We show that, for all R,E, we have that R,E (rasνφ if and only if R,E (J ´́˚ rasφ.
Suppose that R,E (rasνφ. By the interpretation relation, for all S, F , R1, S1, E1, F 1, if

R b S,E ˆ F
a
ÝÑ R1 b S1, E1 ˆ F 1, then R1 b S1, E1 ˆ F 1 (φ. By the interpretation relation,

S, F (J, and hence R,E (J ´́˚ rasφ.
Conversely, suppose that R,E (J ´́˚ rasφ. By the interpretation relation, for all S, F , if

S, F (J, then RbS,EˆF (rasφ, and, furthermore, that for all R1, S1, E1, F 1, if RbS,EˆF
a
ÝÑ

R1 b S1, E1 ˆF 1, then R1 b S1, E1 ˆF 1 (φ. Again, by the interpretation relation, S, F (J, and
hence we have that R,E (rasνφ. �

5.2. MBI with „”-semantics. In this section, we demonstrate how the semantics of action
modalities in Section 5.1 is very prescriptive in terms of the structure of the states that satisfy
the modal formulae. We describe a semantics for MBI defined in terms of the transitions of the
resource–process terms described in Section 2 and of the bisimulation relation „” described in
Section 4. We demonstrate how this relaxes the structural prescriptiveness of the semantics of
the action modalities, and sketch proofs of the Hennessy–Milner completeness result for the logic
with this semantics.

Recall that the structure of an action matches the concurrent structure (b and ˆ) of a state
which performs that action. Hence, when using the interpretation of the logic in Figure 2, the
action modalities are very prescriptive about the internal structure of the states.

Example 50. Let the set of atomic actions be Act “ tau, the set of atomic resources be
Res “ te, ru, with empty resource e, and the resource model R be the least set such that
Definition 2 holds. Let the modification function µ : A ˆR á R be the least function (under
set inclusion of the domain) such that µpa, rq “ e, and Definition 5 holds.

We have that r, a (xayJ, but have that r b e, a ˆ 1 * xayJ and e b r, 1 ˆ a * xayJ, as the
former performs a ¨ 1 and the latter performs 1 ¨ a.

40 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

�

If a is an atomic action, then the action modality xay requires that any state that satisfies the
modality does not consist of a concurrent composition. We may wish to define the satisfaction of
action modalities in terms of actions that are equivalent to the action specified in the modality,
rather than those that are exactly the same as the action specified in the modality. We define
an interpretation (” such that r b e, aˆ 1 (” xayJ and eb r, 1ˆ a (” xayJ, as a ” a ¨ 1 and
a ” 1 ¨ a. The interpretation of a formula at a state is the interpretation of that formula at the
corresponding transition structure in the ambient set of states. For the purposes of this section
pAct,Res,R, µ,∆,Hq is fixed and „”-resource-closed.. Recall the bisimulation relation „”. A
set Σ of states is said to be „”-closed if it satisfies the property

R,E P Σ and R,E „” S, F implies S, F P Σ,

for all states R,E and S, F .
We now proceed to give an interpretation of the logical calculus on the set CState of closed

states. Consider the relation „” restricted to CState. Let P„”pCStateq be the set of all
„”-closed sets of closed states. A valuation is a function

V : Prop Ñ P„”pCStateq

from the set of propositional letters to „”-closed subsets of the set of all states. Every valuation
extends in a canonical way to an interpretation for MBI-formulae, the satisfaction relation for
which is given in Figure 3, and in which every process that appears is required to be an agent.
An ”-model for MBI consists of the set of closed states together with such an interpretation.
Satisfaction in a given ”-model is then denoted R,E (” φ, read as ‘for the given ”-model, the
state R,E has property φ, up to action equivalence relation ”’. Clauses for the quantifiers can
be adapted directly from the ones given in [11, 14].

We define the notion of logical equivalence for (” as follows:

Definition 51 (Logical equivalence up to action equivalence). R,E ”MBI S, F if and only if,
for any ”-model of MBI and all φ, R,E (” φ if and only if S, F (” φ. �

With this set-up, we can prove the forward direction of the Hennessy–Milner completeness
theorem. Note that we use the congruence result proved in Section 4.

Theorem 52. If R,E „” S, F , then R,E ”MBI S, F .

Proof. By induction over the structure of the satisfaction relation, R,E (” φ. The proof follows
similarly to that of Theorem 47. We provide illustrative cases.

Case φ “ xay ψ. As there exist b, R1, E1 such that R,E
b
ÝÑ R1, E1 and a ” b, by the definition

of bisimulation, there exist c, S1, F 1 such that S, F
c
ÝÑ S1, F 1, b ” c, and R1, E1 „” S1, F 1. As

R1, E1 (” ψ, by the induction hypothesis, we have that S1, F 1 (” ψ. By Definition 38, we have
that a ” c, and hence we have that S, F (” xay ψ.

Case φ “ φ1 ´́̊ φ2. Suppose some T , G such that T,G (φ2 and SbT is defined. As R,E „”
S, F and T,G „” T,G, by Definition 43, we have that R b T is defined. By the hypothesis, we
have that RbT,EˆG (” φ2. By Theorem 44, we have that RbT,EˆG „” SbT, F ˆG. By
the induction hypothesis, we have that SbT, FˆG (” φ2. Hence, we have that S, F (” φ1 ´́̊φ2.

Case φ “ xayνψ. By the hypothesis, there exist T , G, R1, T 1, E1, G1 such that RbT,EˆG
b
ÝÑ

R1 b T 1, E1 ˆ G1, R1 b T 1, E1 ˆ G1 (ψ, and a ” b. As R,E „” S, F , T,G „” T,G, and
Rb T is defined, by Definition 43, we have that S b T is defined. By Theorem 44, we have that
Rb T,E ˆG „” S b T, F ˆG. By the definition of bisimulation, there exist c, S1, T 2, F 1, G2,
such that S b T, F ˆG

c
ÝÑ S1 b T 2, F 1 ˆG2, b ” c, and R1 b T 2, E1 ˆG2 „ S1 b T 1, F 1 ˆG1. By

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 41

R,E (” p iff R,E P Vppq
R,E (” K never
R,E (” J always
R,E (” φ iff R,E *” φ
R,E (” φ1 _ φ2 iff R,E (” φ1 or R,E (” φ2
R,E (” φ1 ^ φ2 iff R,E (” φ1 and R,E (” φ2
R,E (” φ1 Ñ φ2 iff R,E (” φ1 implies R,E (” φ2

R,E (” xayφ iff there exist b, R1, E1, such that R,E
b
ÝÑ R1, E1, a ” b, and R1, E1 (” φ

R,E (” rasφ iff for all b, R1, E1, if R,E
b
ÝÑ R1, E1 and a ” b, then R1, E1 (” φ

R,E (” I iff R,E „” e,1
R,E (” φ1 ˚ φ2 iff there exist R1, R2, E1, E2, such that R,E „” R1 b R2, E1 ˆ E2,

R1, E1 (” φ1, and R2, E2 (” φ2
R,E (” φ1 ´́˚ φ2 iff for all S, F, if S, F (” φ1, then R b S,E ˆ F (” φ2

R,E (” xayνφ iff there exist b, S, F,R1, S1, E1, F 1, such that R b S,E ˆ F
b
ÝÑ

R1 b S1, E1 ˆ F 1, a ” b, and R1 b S1, E1 ˆ F 1 (” φ

R,E (” rasνφ iff for all b, S, F,R1, S1, E1, F 1, if R b S,E ˆ F
b
ÝÑ R1 b S1, E1 ˆ F 1

and a ” b, then R1 b S1, E1 ˆ F 1 (” φ.

Figure 3. Satisfaction Relation For Bisimulation Up To Equivalence

Definition 38, we have that a ” c. By the hypothesis, we have that S1 b T 2, E1 ˆG2 (” ψ. By
the induction hypothesis, we have that S1bT 1, F 1ˆG1 (” ψ. Hence we have that S, T (” xayνψ.

�

Again, the reverse direction of the Hennessy–Milner completeness theorem relies on image-
finiteness.

Theorem 53. If R,E ”MBI S, F , then R,E „” S, F .

Proof. Supposing that R,E ”MBI S, F , we require to show that R,E „” S, F . Since „” is
the largest relation closed under the conditions in Definition 22, it suffices to show that ”MBI is
closed under these conditions. That is (wlog), assuming that R,E

a
ÝÑ R1, E1, for some a P A, we

have to exhibit S1, F 1 such that S, F
a
ÝÑ S1, F 1 and R1, E1 ”MBI S

1, F 1.
Let F “ tS1, F 1 | S, F

a
ÝÑ S1, F 1u. If F is empty, then R,E (xayJ and S, F * xayJ,

contradicting R,E ”MBI S, F . Hence F is non-empty, and by the image-finiteness assumption,
F “ tSi, Fi | 1 ď i ď n, for some finite n. Assume for contradiction that R1, E1 ıMBI Si, Fi,
for all 1 ď i ď n. Thus there exist formulas φ1, . . . , φn such that R1, E1 |ù φi but Si, Fi ­|ù φi,
for all i. Hence R,E |ù xaypφ1 ^ . . . ^ φnq and S, F * xaypφ1 ^ . . . ^ φnq, again contradicting
R,E ”MBI S, F . Hence indeed R1, E1 ”MBI Si, Fi, for some Si, Fi P F , as required. �

6. Discussion

This work suggests that the original ideas of resource semantics, though useful and influential
in, say, separation logic, may warrant further exploration.

Specifically, we have shown that a technical difficulty present in an earlier formulation of
the relationship between resources and processes — that is, the lack of the Hennessy–Milner
completeness theorem for the full logic — can be resolved by moving to a version of resource
semantics in which there is a closer combinatory match between the structure carried by resources
and that carried by processes.

42 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

Nevertheless, the resulting resource semantics continues to support the semantics of connec-
tives of the bunched logic BI [30, 17] in the evident way. That is, for example,

R (φ1 ˚ φ2 iff there are R1 and R2 such that R “ R1 bR2 and
R1 (φ1 and R2 (φ2

and

R (φ1 ^ φ2 iff R (φ1 and R (φ2.

Thus the additional combinatory structure does not appear to involve any loss of semantic utility
from the motivating logical perspective.

Some conceptual and technical issues, beyond our present scope, remain to be addressed,
however. In recent work in logic [16], one of us has considered a generalization of resource
semantics to admit multi-dimensional satisfaction relations of the form, for example,

w, r (φ,

in which w PW are taken to be Kripke worlds (ordered by Ď, say) in the sense of classical modal
logic and r P R, where R carries monoidal structure (with composition ˝, say), are interpreted
as resources. In this set-up, we can define, informally for now, a modality ♦s as

w, r (♦sφ iff there is a world w Ď v such that
v, r ˝ s (φ.

Such a modality is highly expressive and, among other things, generalizes the usual S4 modal-
ity [6]. It may be possible to define an analogous action modality, xayS,F , which generalises our
multiplicative modality xayν :

R,E (xayS,F φ iff there exist a,R1, S1, E1, F 1 such that Rb S,E b F
a
ÝÑ R1 b S1, E1 b F 1

and R1 b S1, E1 b F 1 (φ.

Note that, unlike in the previous definition, we add both a resource and a process component. We
conjecture that the transition system employed in the body of this paper and the construction de-
scribed above are both examples of a more general treatment of a more general multi-dimensional
semantics that will have interpretations as a resources semantics. There would seem to be much
to explore here.

A further question concerns the relationship between our work and concurrent separation
logic [29]. Concurrent separation logic is built upon the resource semantics of bunched logic and
handles concurrent processes in the style of Hoare logic. We conjecture that our treatment of
resource semantics can be used to support CSL too.

In general, there is a more-or-less straightforward relationship between Hoare-style presenta-
tions of program logics and logically more standard presentations based on a satisfaction relation
between a model and a propositional formula. Hoare-style systems are based on assertions of the
form

tφ uC tψ u,

for logical formulæ φ and ψ and program commands C, with inference rules — using an essentially
Hilbert-style system — such as Composition and Consequence, respectively,

tφ uS tψ u tψ uT tχ u

tφ uS ;T tχ u
and

φ1 Ñ φ2 tφ2 uS tψ2 u ψ1 Ñ ψ2

tφ1 uS tψ1 u

and Conditional
tχ^ φ uS tψ u t χ^ φ uT tψ u

tφ u if χ then S else T tψ u
,

for programs S and T .

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 43

Semantic presentations are formulated along the lines of

w (M φ,

where M is a model and w is a choice of world. In establishing the relationship between this
view and Hoare-style presentations, we take a model with worlds given by program states (S,
T , etc.) and consider how states evolve as programs perform actions C by executing commands;

that is, S
C
Ñ T . To see how this works we need to consider how such commands generate logical

modalities. Define

S (M rCsφ iff for every evolution S
C
Ñ T , T (M φ,

which asserts that the program must have property φ after executing command c provided that
whenever C evolves S to T , the state T has property φ. Thus, a Hoare-style assertion, tφ uC tψ u,
in which the command C evolves the program state from S to T essentially corresponds to a
semantic assertion

S (M φÑ rCsψ.

Separation Logic [34] (Hoare-style presentation) and Pointer Logic [25] (semantic presenta-
tion) enrich this view of reasoning about programs by introducing the BI’s concept of resource
semantics in order to reason about mutable data structures.

In concurrent separation logic, the rule for the concurrent product of n ě 2 commands has
the form

tφ1 uC1 tψ1 u . . . tφn uCn tψn u

tφ1 ˚ . . . ˚ φn uC1 ˆ ¨ ¨ ¨ ˆ Cn tψ1 ˚ . . . ˚ ψn u
,

where no variable free in φi or ψi is changed in Cj when j ‰ i.
In our setting, as explained in Section 5, the multiplicative conjunction is also intimately

connected to concurrent product:

R,E (φ1 ˚ φ2 iff there exist R1, E1, R2, E2 such that R,E „ R1 b R2, E1 ˆ E2

and R1, E1 (φ1 and R2, E2 (φ2.

By exploring the relationship between Hoare-style and semantic presentations of the program
logic sketched above, we conjecture that it will be possible to give a systematic resource semantics
for wide range of concurrent phenomena (cf. [23]), including a synchronous semantics for con-
current separation logic (in contrast to Brookes’ interleaving semantics [8]). Such a programme
lies beyond the scope of this paper.

Acknowledgements. We are grateful to Jade Alglave, James Brotherston, Matthew Collinson,
and Peter O’Hearn for their advice in writing this paper. This work has been partially sup-
ported by the UK Technology Strategy Board project TS/I002502/1, ‘Trust Domains’, and the
UK EPSRC project EP/K033042/1, ‘Algebra and Logic for Policy and Utility in Information
Security’.

References

[1] G. Anderson, J. Brotherston, and D. Pym. Hennessy–Milner Completeness in Resource–Process Calculus.
Manuscript, UCL, 2015: http://www.cs.ucl.ac.uk/staff/D.Pym/resource_process_HM.pdf.

[2] A. Beautement, R. Coles, J. Griffin, C. Ioannidis, B. Monahan, D. Pym, A. Sasse, and M. Wonham. Modelling

the Human and Technological Costs and Benefits of USB Memory Stick Security. In Managing Information
Risk and the Economics of Security, M. Eric Johnson (ed.), Springer, 2008. 141–163.

[3] Y. Beres, J. Griffin, S. Shiu, M. Heitman, D. Markle, and P.Ventura. Analysing the Performance of Secu-
rity Solutions to Reduce Vulnerability Exposure Windows. Proc. Annual Computer Security Applications
Conference, 33–42, Anaheim, California: IEEE, 2008. doi: 10.1109/ACSAC.2008.42.

[4] Y. Beres, D. Pym, and S. Shiu. Decision Support for Systems Security Investment. In Proc. Business-driven
IT Management (BDIM), IEEE Xplore, 2010, 118–125. doi: 10.1109/NOMSW.2010.5486590.

44 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

[5] J. Bergstra and J. Klop. Algebra of communicating processes with abstraction. In Theoretical Computer
Science, 37(1):77-121, 1985.

[6] B. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.

[7] G. Birtwistle. Discrete event modelling on Simula. Springer, 1987.
[8] S. Brookes. A semantics for concurrent separation logic Theoretical Computer Science 375 (1–3), 2007, 227–

270.

[9] T. Caulfield, D. Pym, and J. Williams. Compositional Security Modelling: Structure, Economics, and Be-
haviour. LNCS 8533:233–245, 2014.

[10] T. Caulfield and D. Pym. Modelling and simulating systems security policy. In Proc. 8th SIMUTools, 2015.
ACM Digital Library. To appear.

[11] M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling. Mathematical Structures

in Computer Science, 19(5):959–1027, 2009.
[12] M. Collinson, B. Monahan, and D. Pym. A Logical and Computational Theory of Located Resource. Journal

of Logic and Computation 2009.

[13] M. Collinson, B. Monahan, and D. Pym. Semantics for structured systems modelling and simulation. Proc.
SIMUTools 2010, 34:1–34:10. ACM Digital Library. doi:10.4108/ICST.SIMUTOOLS2010.8631.

[14] M. Collinson, B. Monahan, and D. Pym. A Discipline of Mathematical Systems Modelling. College Publica-

tions, 2012.
[15] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design. Addison Wesley,

3rd ed., 2000.

[16] J.-R. Courtault, D. Galmiche, and D. Pym. A Logic of Separating Modalities. Manuscript, UCL, 2015.
[17] D. Galmiche, D. Méry, and D. Pym. The Semantics of BI and Resource Tableaux. Mathematical Structures

in Computer Science (2005) 15, 1033–1088.

[18] Hewlett-Packard Laboratories. A brief introduction to structured modelling with Core Gnosis http://www.

hpl.hp.com/research/systems_security/gnosis.html.

[19] M. Hennessy. A calculus for costed computations. Logical Methods in Computer Science 7(1):1–35, 2011.
[20] M. Hennessy and G. Plotkin. On observing nondeterminism and concurrency. LNCS 85:299–308, 1980.

[21] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM,

32(1):137–161, 1985.
[22] Hewlett-Packard Laboratories. Towards a science of risk analysis. http://www.hpl.hp.com/news/2011/

oct-dec/security_analytics.html.

[23] T. Hoare. Generic Models of the Laws of Programming. LNCS 8051:213–226, 2013.
[24] T. Hoare and P. O’Hearn. Separation Logic Semantics for Communicating Processes. ENTCS 212, 2008,

3–25. doi:10.1016/j.entcs.2008.04.050.

[25] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In: Hankin, C and
Schmidt, D, (eds.) Proc 28th ACM POPL, 14–26, 2001. ISBN: 1-58113-336-7.

[26] F. Mattern. Virtual Time and Global States of Distributed Systems. Parallel and Distributed Algorithms

1(23):215?226, 1989.
[27] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25(3):267–310, 1983.

[28] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
[29] P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer Science 375(1–3), 2007,

271–307.

[30] P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic Logic 5(2):215–244, June
1999.

[31] G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Department of

Computer Science, Aarhus University, 1981.
[32] D. Pym, P. O’Hearn, and H. Yang. Possible Worlds and Resources: The Semantics of BI. Theoretical Com-

puter Science 315(1): 257–305. Erratum: p. 285, l. -12: ‘, for some P 1, Q “ P ;P 1’ should be ‘P $ Q’.

[33] S. Read. Relevant Logic Basil Blackwell, 1988.
[34] J. Reynolds. Separation logic: a logic for shared mutable data structures. Proceedings of the 17th IEEE

Symposium on Logic in Computer Science, 55–74, IEEE, 2002.
[35] R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoretical Computer Science 37, 245–267,

1985.
[36] W. Vogels. Eventually Consistent. Communications of the ACM 52(1), 40–44, 2009. doi:

10.1145/1435417.1435432.

A CALCULUS AND LOGIC OF BUNCHED RESOURCES AND PROCESSES 45

Gabrielle Anderson, UCL
E-mail address: gabrielle.anderson@ucl.ac.uk

David Pym, UCL
E-mail address: d.pym@ucl.ac.uk

