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Abstract

Various properties of two bracket abstraction algorithms, previously introduced, are dis-
cussed and some of them are proved in this paper. Algorithm (L) is uni-variate and
uses yes-no representations, whereas algorithm (M) is multi-variate and uses array rep-
resentations. It is shown that (a) both algorithms are structure-preserving, (b) there is
a straightforward connection between [x] P and [x] Q, produced by algorithm (L), if the
primal components of Q, except the first, are a permutation of the primal components of
P , except the first, (c) there is a simple connection between the two abstracts produced
when algorithm (L) is used repeatedly on the same input term, but the abstractions are
performed in a different order in each case, (d) there is a straightforward connection
between the array representations produced by algorithm (M) and the yes-no represen-
tations produced when algorithm (L) is used to abstract the same variables individually
from the same input term and (e) using algorithm (M) multi-variate abstraction can be
“partitioned”.
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1 Introduction

Bracket abstraction in weak combinatory logic is a syntactic operation which removes a variable
x from a term X. It is usually represented as [x] X. My interest in abstraction algorithms has
its origin in their use in the implementation of pure functional programming languages [1]. I am
well aware that this way of implementing a functional language is out of fashion, but for quite
a while I have believed that the full potential of combinator-based methods is still to be fully
realised and that there are still many interesting things to be discovered about combinators
and abstraction algorithms. This faith of mine was vindicated when Stevens [6] developed
a family of novel abstraction algorithms. His approach involves referring to combinators by
means of what he calls ‘iconic representations’. Unlike the standard notation for combinators,
which uses single-letter identifiers, iconic representations are multi-letter identifiers. They have
a significant internal structure from which the reduction property of the combinator referred
to can be read off. Inspired by Stevens’s work I developed further new abstraction algorithms.
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In this algorithm P1 must be an atom.

[x] P1 P2 . . . Pm = β1β2 . . . βm Q1 Q2 . . . Qm,

where β is a yes-no representation and, for 1 ≤ i ≤ m,

βi = y and Qi = I, if Pi = x;

βi = y and Qi = [x] Pi, if Pi 6= x, but x ∈ FV (Pi);

βi = n and Qi = Pi, if x /∈ FV (Pi).

The reduction rule for the yes-no representation β introduced by the above algorithm is as
follows:

β1β2 . . . βm P1 P2 . . . Pm Pm+1 → Q1 Q2 . . . Qm,

where, for 1 ≤ i ≤ m,

Qi =

{
Pi Pm+1, if βi = y;

Pi, if βi = n.

Figure 1: Algorithm (L) and yes-no reduction.

Some of these made use of yes-no representations [3] and others array representations [2].
Because of similarities between all these new representations, the word ‘iconic’ is now used
generically to refer to all of them.

Although the original motivation for developing iconic representations and their associated
abstraction algorithms was that of improving the way in which pure functional languages were
implemented, the present paper concentrates on a number of surprising properties possessed
by yes-no and array representations and on an interesting connection between them. Some
interesting properties of two algorithms, namely (L) and (M), that employ yes-no and array
representations, respectively, are also proved. In particular, I show that (a) both algorithms
are structure-preserving, (b) if P and Q are such that the primal components of Q, except
the first, are a permutation of the primal components of P , except the first, then there is a
straightforward connection between [x] P and [x] Q, where both are obtained by using al-
gorithm (L), (c) there is a straightforward connection between [x1]([x2](· · · ([xa] P ) · · · )) and
[xσ(1)]([xσ(2)](· · · ([xσ(a)] P ) · · · )), where σ is a permutation of the numbers {1, 2, . . . , a}, (d)
there is a straightforward connection between the array representations produced by algo-
rithm (M) and the yes-no representations produced when algorithm (L) is used to abstract the
same variables individually from the same input term and (e) using algorithm (M) multi-variate
abstraction can be “partitioned”.

2 Fixing Terminology

Standard combinatory-logic terminology is used in this paper [4]. The letters E, K, P , Q, R,
T and X, sometimes decorated with subscripts, superscripts or primes, are used for arbitrary
terms. The letters x, y and z, sometimes decorated with subscripts or superscripts, are used
as variables. Note that every term P can be uniquely expressed in the form P1 P2 . . . Pm,
where P1 is an atom and m ≥ 1. The Pi are known as the primal components of P .

The notation used for combinators in this paper is unusual. In the case of algorithm (L),
shown in Fig. 1, the combinators used are represented as strings of the letters y or n and in
the case of algorithm (M), shown in Fig. 2, the combinators used are represented as arrays in
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which each element is either y or n. The length of a term P , denoted as #P , is the number of
occurrences of atoms that it contains. Note that if β is a yes-no representation, it is assumed
that #β = 1. Similarly, if γ is an array representation, it is assumed that #γ = 1, but I discuss
this assumption more fully elsewhere [2].

Let P be a term which, if #P > 1, is represented as a binary tree whose internal nodes
are application nodes. Furthermore, let us say that an application node covers a variable x if
x occurs in the subterm whose main operator is the application corresponding to that node.
Then rpv({x1, x2, . . . , xa}, P ) is the number of application nodes in P whose right child is an
application node which also covers at least one of the variables in the list x1, x2, . . . , xa. If P is
represented in a linear form using the fewest possible parentheses, then rpv({x1, x2, . . . , xa}, P )
is equal to half the number of parentheses that enclose subterms containing at least one of
the variables in the list x1, x2, . . . , xa. For example, rpv({x, y, z}, x(yz)(wv)z) = 1 and
rpv({x, y}, x(y(wv))(w(xv))) = 3. Let P = P1 P2 . . . Pm, where P1 is an atom and let
S = {x1, x2, . . . , xa}. Then

rpv(S, P ) =

m∑
j=1

if (∀i ∈ 1..a) xi /∈ FV (Pj) or (∃i ∈ 1..a) xi = Pj

then 0 else 1 + rpv(S, Pj),

where ‘∀i ∈ 1..a’ means ‘for all whole numbers i between 1 and a inclusive’ and ‘∃i ∈ 1..a’
means ‘for some whole number i between 1 and a inclusive’.

3 Algorithm (L)

The reduction rule for yes-no representations is given in Fig. 1. An example should make clear
how it works:

ynyn P1 P2 P3 P4 P5 → P1 P5 P2 (P3 P5) P4.

Algorithm (L), which makes use of yes-no representation, is also shown in Fig. 1. An example
should clarify its operation:

[x] x (y z) (y x z (x y)) z = ynyn I (y z) ([x] y x z (x y)) z

= ynyn I (y z) (nyn y I z ([x] x y)) z

= ynyn I (y z) (nyn y I z (yn I y)) z.

The basic properties of algorithm (L), such as its complexity, are proved elsewhere [3]. It is
also shown there how yes-no representations can be translated into the standard notation for
combinators. Many people, on first encountering yes-no representations, think that they are
similar to director strings [5], but director strings are not combinators and to manipulate them
a novel formal system called ‘the director-string calculus’ has to be developed. By contrast,
yes-no representations are just another notation for combinators and so the whole machinery
of combinatory logic can be used to manipulate them.

4 Algorithm (M)

The reduction rule for array representations is given in Fig. 2. If β is a yes-no representation or,
equivalently, an a× 1 or 1×m array representation, then yc(β) is the number of occurrences
of the letter y in β and posy(i, β) is the position of the ith occurrence of y in β, where
1 ≤ i ≤ yc(β). If i > yc(β), then posy(i, β) is not defined. For example, yc(ynnynyy) = 4,
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In this algorithm the variables xi and xj , for 1 ≤ i, j ≤ a, in the bracket prefix [x1, x2, . . . , xa]
are the same iff i = j and P1 must be an atom.

[x1, x2, . . . , xa] P1 P2 . . . Pm = γ Q1 Q2 . . . Qm,

where γ is an array representation and, for 1 ≤ i ≤ a and 1 ≤ j ≤ m,

γi,j =

{
y, if xi ∈ FV (Pj),

n, otherwise;

and, for 1 ≤ j ≤ m,

Qj =


I, if Pj = xi, for some i such that 1 ≤ i ≤ a,
Pj , if xi 6∈ FV (Pj), for any i such that 1 ≤ i ≤ a,
[xfj(1), xfj(2), . . . , xfj(qj)] Pj , otherwise;

where qj = tv([x1, . . . , xa], Pj) and, for 1 ≤ k ≤ qj , fj(k) = inx (k, [x1, . . . , xa], Pj).

The reduction rule for the array representation γ introduced by the above algorithm is as
follows:

γ P1 P2 . . . Pm Pm+1 . . . Pm+a → Q1 Q2 . . . Qm,

where, for 1 ≤ j ≤ m, Qj = Pj Pgj(1) Pgj(2) . . . Pgj(sj), where sj = yc(γ1,jγ2,j · · · γa,j) and,
for 1 ≤ k ≤ sj , gj(k) = a+ posy(k, γ1,jγ2,j · · · γa,j).

Figure 2: Algorithm (M) and array reduction.

posy(1, ynnynyy) = 1 and posy(2, ynnynyy) = 4. An example should clarify the way in which
array representations are reduced:∣∣∣∣∣∣

n n y n
y n y n
n n y y

∣∣∣∣∣∣ P1 P2 P3 P4 P5 P6 P7 = P1 P6 P2 (P3 P5 P6 P7) (P4 P7).

The order of an a×m array representation γ is a+m and the jth column of the array γ tells
us which of the arguments Pm+1, Pm+2, . . . , Pm+a appear with Pj in the contractum of the
array representation: Pm+i only occurs if γi,j is y. For example, the 4th column of the array
representation used in the example is nny. This means that P4 P7 occurs in the contractum.

An abstraction algorithm that uses array representations is shown in Fig. 2. The main
properties of algorithm (M), such as its complexity, are proved elsewhere [2]. It is also shown
there how array representations can be translated into the standard notation for combinators.

Whenever multi-variate abstraction [x1, x2, . . . , xa] P is mentioned in this paper, it is as-
sumed that all the variables in the bracket prefix are distinct. Note that a different algorithm
would result if it was not a requirement for P1 to be an atom. The function tv([~x], P ) returns
the total number of variables in the list ~x that actually occur in the term P . For example,
tv([x1, x2, x3], x1x3) = 2. The function inx (i, [~x], P ) returns the index of the ith variable in
the list ~x that occurs in P . For example, inx (1, [x1, x2, x3], x2x3(x1x2)) = 2. The element γi,j
of the array representation γ tells us whether or not xi occurs in Pj . A letter y says that it
does and an n tells us that it does not. An example of the use of algorithm (M) should make



56 Investigations into Iconic Representations

its operation clear:

[x, y, z] x(yx)(zx)y =

∣∣∣∣∣∣
y y y n
n y n y
n n y n

∣∣∣∣∣∣ I ([x, y] y x) ([x, z] z x) I

=

∣∣∣∣∣∣
y y y n
n y n y
n n y n

∣∣∣∣∣∣ I

(∣∣∣∣ n y
y n

∣∣∣∣ I I

) (∣∣∣∣ n y
y n

∣∣∣∣ I I

)
I.

The top row yyyn of the 3 × 4 array representation that occurs in this example shows the
pattern of occurrences of the variable x in the primal components of the input term. Similarly,
the second row, namely nyny, shows the pattern of occurrences of the variable y in the primal
components of the input term and the third row does the same for the variable z.

5 Properties

5.1 Structure-preserving

One of the useful properties that algorithm (L) possesses is that it is structure-preserving.
This is a generalisation of one of the four properties that Turner [7] says that an abstraction
algorithm should have if it is to be any good when used to implement a functional language. He
says that the algorithm should produce short abstracts, use only a finite number of combinators,
be uni-variate, but well-behaved under self-composition. To understand the last requirement,
let P1 and P2 be terms of combinatory logic such that each of the variables x1, x2, . . . , xa
occurs in both of them. Furthermore, let T1 = [x1] P1 P2, T2 = [x2] T1, T3 = [x3] T2,
. . . , Ta = [xa] Ta−1. Then the algorithm used to produce [x] X is well-behaved under self-
composition if Ti, for 1 ≤ i ≤ a, has the form K Q1 Q2, where K is a term consisting entirely
of combinators. The property of being structure-preserving is a generalisation of Turner’s
property of being well-behaved under self-composition. Let P1, P2, . . . , Pm be m terms. Any
of the variables x1, x2, . . . , xa can occur in any of these terms, but none of them has to.
Furthermore, let T1 = [x1] P1 P2 . . . Pm and Ti, for 2 ≤ i ≤ a, be as defined above. Then
an algorithm that produces abstracts Ti, for 1 ≤ i ≤ a, of the form K Q1 Q2 . . . Qm, where
K is a term consisting entirely of combinators, is said to be structure-preserving. Elsewhere
[3, pp. 4–5] I show that Turner’s algorithm is not structure-preserving in this sense. In fact,
no algorithm which uses only a finite number of combinators can be. Algorithm (L), however,
is structure-preserving. (The reason why algorithm (L) does not contain the clauses [x] x = I
and [x] E x = E, when x does not occur in E, is because the presence of those clauses would
mean that the resulting algorithm is not structure-preserving.)

Algorithm (M) can also be said to be structure-preserving, though in a sense which is
analogous to that in which algorithm (L) is said to be structure-preserving. To be more
precise, let P = P1 P2 . . . Pm and [~xk] = [xk1 ][xk2 ] . . . [xkak ]. Furthermore, let T1 = [~x1] P ,

T2 = [~x2] T1, T3 = [~x3] T2, . . . , Tk = [~xk] Tk−1. Then each term Ti, 1 ≤ i ≤ k, is of the form
K Q1 Q2 . . . Qm, where K is made up entirely of combinators. (The reason why algorithm (M)
does not contain the clause [~x] E ~x = E, where E does not contain any of the variables in ~x, is
because the presence of that clause would mean that the resulting algorithm would no longer
be structure-preserving.)

5.2 Permutation of Primal Components

In addition to being structure-preserving, algorithm (L) also has a number of further interesting
properties. In this subsection I consider the following property: given the result of applying
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algorithm (L) to a term P , we can easily obtain the result of applying it to a term obtained
from P be permuting all its primal components except the first. We do this by applying the
same permutation to the letters making up the yes-no representation, except the first, and
the primal components making up the abstract, except the first two. (Note that the first
primal component of the abstract is a yes-no representation. Note also that, as here used, a
permutation is just a bijection of a set to itself.) An example should clarify this property. The
following is an example of the use of algorithm (L):

[x] x (y z) (x y) z (y x z) = ynyny I (y z) ([x] x y) z ([x] y x z)

= ynyny I (y z) (yn I y) z (nyn y I z).

If we now want to know what [x] x z (y x z) (x y) (y z), say, is, we do not have to apply
algorithm (L). We can instead read off the result from the above abstract. This is because
the second input term is obtained from the first by applying a permutation to its primal
components, except the first. Thus,

[x] x z (y x z) (x y) (y z) = ynyyn I z (nyn y I z) (yn I y) (y z).

In this case the permutation is the bijection {〈2, 4〉, 〈3, 5〉, 〈4, 3〉, 〈5, 2〉}. Note that the non-first
primal components of the non-first primal components of the input term can themselves be
permuted, if they contain the abstraction variable, by means of a possibly different permutation,
and so on until we reach primal components which are atoms. For example, if we are interested
in working out [x] x z (y z x) (x y) (y z), we do not have to apply algorithm (L) as the result can
be read off from the first abstract given above. The result is ynyyn I z (nny y z I) (yn I y) (y z).
These observations are made precise in the following proposition.

Proposition 1 Let σ be a permutation of {2, 3, . . . ,m} and let P = P1 P2 . . . Pm, where P1

is an atom. Then if
[x] P = β1β2 . . . βm Q1 Q2 . . . Qm,

where β1β2 . . . βm and the Qi are as specified by algorithm (L), then

[x] P1 Pσ(2) . . . Pσ(m) = β1βσ(2) . . . βσ(m) Q1 Qσ(2) . . . Qσ(m).

Proof The proof is by induction on rpv({x}, P ). In the base case rpv({x}, P ) = 0. When
that happens let us assume that

[x] P = β1β2 . . . βm Q1 Q2 . . . Qm,

where β1β2 . . . βm and the Qj are as specified by algorithm (L). Because rpv({x}, P ) = 0, the
algorithm is not applied recursively. Therefore, either Qi = Pi, when x 6∈ FV (Pi), or Qi = I,
when x = Pi. On this assumption we also have that

[x] P1 Pσ(2) . . . Pσ(m) = γ1γ2 . . . γm R1 R2 . . . Rm.

where γ1γ2 . . . γm and the Rj are as specified by algorithm (L). P1 is an atom, so R1 = P1, if
P1 6= x, and Ri = I, if P1 = x. Furthermore, for 2 ≤ i ≤ m,

γi =

{
y, if x = Pσ(i),

n, otherwise;

and, for 2 ≤ i ≤ m, Ri = Pσ(i), if x 6∈ FV (Pσ(i)), and Ri = I, if x = Pσ(i). Thus, γ1 = β1 and
R1 = P1 and, for 2 ≤ i ≤ m, γi = βσ(i) and Ri = Qσ(i). Thus, using conditionalisation, the
base case is established.
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In the inductive step rpv({x}, P ) 6= 0. Let us assume that

[x] P = β1β2 . . . βm Q1 Q2 . . . Qm,

where β1β2 . . . βm and the Qj are as specified by algorithm (L). On this assumption we also
have that

[x] P1 Pσ(2) . . . Pσ(m) = γ1γ2 . . . γm R1 R2 . . . Rm.

where γ1γ2 . . . γm and the Rj are as specified by algorithm (L). Since P1 is the first primal
component of P , β1 = γ1 and R1 = Q1. For 2 ≤ i ≤ m, we have that

γi =

{
y, if x ∈ FV (Pσ(i)),

n, otherwise;

and also that

Ri =


I, if Pσ(i) = x,

[x] Pσ(i), if Pσ(i) 6= x, but x ∈ FV (Pσ(i)),

Pσ(i), if x /∈ FV (Pσ(i)).

When x = Pσ(i), then γi = βσ(i) and Ri = Qσ(i). When x 6∈ FV (Pσ(i)), then γi = βσ(i) and
Ri = Qσ(i). When x 6= Pσ(i) and x ∈ FV (Pσ(i)), then γi = βσ(i) and Ri = Qσ(i), by the
inductive hypothesis, as rpv({x}, Pσ(i)) < rpv({x}, P ). Thus, the inductive step is established
by the use of conditionalisation and the result follows by induction. QED.

5.3 Permutation of Abstractions

An unusual property of algorithm (L) emerges when it is used several times in order to abstract
different variables from a term, for example, if it is used to produce [z] ([y] ([x] x (y z) (y x z))),
say. If we now want to know what the abstract would be if the variables were abstracted in
a different order, then that can be read off from the initial abstract. In other words, it is
straightforward to produce, say, [y] ([x] ([z] x (y z) (y x z))). All that is required is to
permute various parts of the abstract in the same way that the abstraction variables have been
permuted, as the following shows:

[z] ([y] ([x] x (y z) (y x z)))

= nnnyy︸︷︷︸
βz

nnyy︸︷︷︸
βy

yny︸︷︷︸
βx

I (nny︸︷︷︸
γz

yn︸︷︷︸
γy

I I) (nnnny︸︷︷︸
δz

nynn︸︷︷︸
δy

nyn︸︷︷︸
δx

I I I).

[y] ([x] ([z] x (y z) (y x z)))

= nnnyy︸︷︷︸
βy

nyny︸︷︷︸
βx

nyy︸︷︷︸
βz

I (nyn︸︷︷︸
γy

ny︸︷︷︸
γz

I I) (nnynn︸︷︷︸
δy

nnyn︸︷︷︸
δx

nny︸︷︷︸
δz

I I I).

These observations are made precise in the following proposition.

Proposition 2 Let us assume the following:

[x1] ([x2] (. . . ([xa] P1 P2 . . . Pm) . . .))

= nn . . .n︸ ︷︷ ︸
a−1 times

β1,1β1,2 . . . β1,m nn . . .n︸ ︷︷ ︸
a−2 times

β2,1β2,2 . . . β2,m . . . βa,1βa,2 . . . βa,m Q1 Q2 . . . Qm

where, for 1 ≤ i ≤ a and 1 ≤ j ≤ m,

βi,j =

{
y, if xi ∈ FV (Pj),

n, otherwise;
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and, for 1 ≤ j ≤ m,

Qj =


I, if Pj = xi, ∃i ∈ 1..a,

Pj , if xi 6∈ FV (Pj), ∀i ∈ 1..a,

[xj1 ]([xj2 ](. . . ([xjf(j)
] Pj) . . .)), otherwise,

where f(j) is the number of the variables x1, x2, . . . , xa that occur in Pj and each of the variables
xj1 , xj2 , . . . , xjf(j)

, where j1 < j2 < . . . < jf(j), occur in Pj and no other variable xi, for
1 ≤ i ≤ a, does. Then, where σ is a permutation of the numbers {1, 2, . . . , a},

[xσ(1)] ([xσ(2)] (. . . ([xσ(a)] P1 P2 . . . Pm) . . .))

= nn . . .n︸ ︷︷ ︸
a−1 times

βσ(1),1βσ(1),2 . . . βσ(1),m nn . . .n︸ ︷︷ ︸
a−2 times

βσ(2),1βσ(2),2 . . . βσ(2),m . . .

βσ(a),1βσ(a),2 . . . βσ(a),m R1 R2 . . . Rm

where the βi,j, for 1 ≤ i ≤ a and 1 ≤ j ≤ m, are as defined above and, for 1 ≤ j ≤ m,

Rj =


I, if Pj = xσ(i), ∃i ∈ 1..a,

Pj , if xσ(i) 6∈ FV (Pj), ∀i ∈ 1..a,

[xσ(j1)]([xσ(j2)](. . . ([xσ(jf(j))] Pj) . . .)), otherwise.

Proof Let P = P1 P2 . . . Pm. The proof of this result is by induction on the value of
φ(a, rpv({x1, x2, . . . , xa}, P )), where φ : N1 ×N→ N1 is a total bijection. (N is the set of all
non-negative whole numbers and N1 is the set of all positive whole numbers.) The function φ
can be defined as follows:

φ(p, q) =


p2, p = q + 1;

(p− 1)2 + q + 1, p > q + 1;

q2 + q + p, p < q + 1.

In the base case φ(a, rpv({x1, x2, . . . , xa}, P )) = 1. Thus, a = 1 and rpv({x1, x2, . . . , xa}, P ) =
0. In this case we have that

[x1] P1 P2 . . . Pm = β1,1β1,2 . . . β1,m Q1 Q2 . . . Qm,

where β1,1β1,2 . . . β1,m and the Qj are as specified in the statement of the assumption of the
proposition above. We also have that

[xσ(1)] P1 P2 . . . Pm = γ1,1γ1,2 . . . γ1,m R1 R2 . . . Rm,

where γ1,1γ1,2 . . . γ1,m and the Rj are as specified in the statement of the assumption of the
proposition above. From this we need to show that the then-part of the proposition holds in
the base case. As rpv({x1, x2, . . . , xa}, P ) = 0, none of the primal components of P which
are combinations contain x1. Thus, the algorithm is not applied recursively. There is only
one permutation of the number 1, namely the identity function. Therefore, γ1,1γ1,2 . . . γ1,m =
βσ(1),1βσ(1),2 . . . βσ(1),m and Ri = Qi, for 1 ≤ i ≤ m. Thus, the base case has been established.

In the inductive step φ(a, rpv({x1, x2, . . . , xa}, P )) 6= 1. We then have that

[x1] ([x2] (. . . ([xa] P1 P2 . . . Pm) . . .))

= nn . . .n︸ ︷︷ ︸
a−1 times

β1,1β1,2 . . . β1,m nn . . .n︸ ︷︷ ︸
a−2 times

β2,1β2,2 . . . β2,m . . . βa,1βa,2 . . . βa,m Q1 Q2 . . . Qm
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where the βi,j and the Qj are as specified in the statement of the assumption part of the
proposition. Let σ be a permutation of the numbers 1, 2, 3, . . . , a. Then we also have that

[xσ(1)] ([xσ(2)] (. . . ([xσ(a)] P1 P2 . . . Pm) . . .))

= nn . . .n︸ ︷︷ ︸
a−1 times

γ1,1γ1,2 . . . γ1,m nn . . .n︸ ︷︷ ︸
a−2 times

γ2,1γ2,2 . . . γ2,m . . . γa,1γa,2 . . . γa,m

R1 R2 . . . Rm

where the γi,j and the Rj are as specified in the statement of the assumption part of the
proposition. On this basis we need to show that the then-part of the proposition obtains in
the inductive step of the proof. Because the permutation σ has been applied to the indices of
the abstracting variables, γi,j = βσ(i),j , for 1 ≤ i ≤ a and 1 ≤ j ≤ m.

When Pj = xi, for some i such that 1 ≤ i ≤ a, then Qj = I and Rj = I. Therefore,
Rj = Qj .

When xi 6∈ FV (Pj), for any i such that 1 ≤ i ≤ a, then Qj = Pj and Rj = Pj . Therefore,
Rj = Qj .

When Pj 6= xi, for any i such that 1 ≤ i ≤ a, and xi ∈ FV (Pj), for some i such that
1 ≤ i ≤ a, then

Qj = [xj1 ] ([xj2 ] (. . . ([xjf(j)
] Pj) . . .)).

In this situation, by the inductive hypothesis, since φ(f(j), rpv({xj1 , xj2 , . . . , xjf(j)
}, Pj)) <

φ(a, rpv({x1, x2, . . . , xa}, P )), it follows that

Rj = [xσ(j1)] ([xσ(j2)] (. . . ([xσ(jf(j))] Pj) . . .)).

Thus, the inductive step has been established and the result follows by induction. QED.

5.4 Relating Yes-no and Array Representations

There is an interesting connection between the yes-no representations produced when algo-
rithm (L) is used to abstract different variables from the same input term and the array
representation produced when algorithm (M) is used to abstract those variables in a single
sweep from the same input term. The following example illustrates this connection. Let
P = y (x z) (y x z). Then we have

[x] P = nyy y (yn I z) (nyn y I z).

[y] P = yny I (x z) (ynn I x z).

[z] P = nyy y (ny x I) (nny y x I).

We also have that

[x, y, z] P =

∣∣∣∣∣∣
n y y
y n y
n y y

∣∣∣∣∣∣ I

(∣∣∣∣ y n
n y

∣∣∣∣ I I

) ∣∣∣∣∣∣
n y n
y n n
n n y

∣∣∣∣∣∣ I I I

 .

If we look at the yes-no representations that are the first primal components of the three
abstracts produced by [x] P , [y] P and [z] P , we notice that they are the same as the three
rows of the array representation which is the first primal component of the abstract produced
by [x, y, z] P . (There are also connections between the other representations produced, but
they are not my concern here.) This connection can be stated more precisely as follows. Let
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P = P1 P2 . . . Pm. Then we have

[x1] P = β1,1β1,2 . . . β1,m Q1
1 Q

1
2 . . . Q1

m,

[x2] P = β2,1β2,2 . . . β2,m Q2
1 Q

2
2 . . . Q2

m,

. . .

[xa] P = βa,1βa,2 . . . βa,m Qa1 Q
a
2 . . . Qam,

where the yes-no representations and the Qij , for 1 ≤ i ≤ a and 1 ≤ j ≤ m, are as specified by
algorithm (L) as shown in Fig. 1. But we also have that

[x1, x2, . . . , xa] P = γ Q1 Q2 . . . Qm,

where γ and the Qj , for 1 ≤ j ≤ m are as specified by algorithm (M) as shown in Fig. 2. The
connection between these is that γi,j = βi,j , for 1 ≤ i ≤ a and 1 ≤ j ≤ m. (The connection
between the Qj and the Qij is more complicated and is not my concern here.) This connection
is a straightforward consequence of the definitions of algorithms (L) and (M).

5.5 Properties of Array Representations

No operations suggested by standard matrix operations have been found to have analogues in
array representations, but some other operations have already been discovered. For example,
if α is an a × (m + 1) array representation such that αi,1 = n, for 1 ≤ i ≤ a, and γ is a
b×m array representation, then α γ =βη δ, where =βη is βη equality and δ is an (a+ b)×m
array representation such that, for 1 ≤ i ≤ a and 1 ≤ j ≤ m, δi,j = αi,j+1 and δa+i,j = γi,j .
(The proof of this result is a straightforward, though tedious, consequence of the definition of
reduction for array representations given in Fig. 2.) For example,

∣∣∣∣ n n n y n n n
n n n n n n y

∣∣∣∣
∣∣∣∣∣∣
y n n y n n
n y n n y n
y y y y n y

∣∣∣∣∣∣ =βη

∣∣∣∣∣∣∣∣∣∣
n n y n n n
n n n n n y
y n n y n n
n y n n y n
y y y y n y

∣∣∣∣∣∣∣∣∣∣
.

The significance of this property is that we can “partition” a multi-variate abstraction per-
formed by algorithm (M), because the following holds:

[x1, x2, . . . , xa] ([xa+1, xa+2, . . . , xa+b] P ) =βη [x1, x2, . . . , xb] P.

In fact, the “partitioning” does not have to be into two. It can be into any number of component
abstractions. Such different “partitionings” would give rise to different relations between array
representations.

6 Conclusion

Although the original motivation for developing iconic representations and their associated
abstraction algorithms was that of improving the way in which pure functional languages are
implemented, I have shown in this paper that algorithms (L) and (M) have several surprising
and unusual properties. In addition, I have shown that there is an interesting connection
between the representations produced by these two algorithms and that a useful connection
between certain array representations can be established which allows us to “partition” multi-
variate abstraction. I hope that these properties and connections stimulate other people to
investigate these algorithms and the representations that they use. I find them fascinating and
I am confident that many more interesting and useful properties that they possess are waiting
to be discovered.
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