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Abstract

A partial correctness specification is a triple {P} Γ {Q} consisting of two predi-
cates, namely P and Q, and a command Γ. A Hoare logic is a formal system for
establishing various relations between such triples. In this paper it is shown how
a partial correctness specification containing a dummy command can be derived
from a Z schema. The now well-understood ways of developing a command from
such a partial correctness specification can then be used to implement the origi-
nal Z schema. This approach is better than its rivals because it uses well-known
tried-and-tested methods.

Introduction

The use of formal specification methods in general and Z in particular is gaining
ground in the programming community. Some evidence for this can be found in
the growing number of textbooks available on the subject. Restricting my attention
to Z, recent years have seen the publication of Ince (1988), Woodcock and Loomes
(1988), Diller (1990), Potter, Sinclair and Till (1991) and Lightfoot (1991). Spivey
(1989) is a comprehensive reference manual and the denotational semantics of Z is
provided in Spivey (1988).

The general approach to constructing and developing a formal specification is now
well established. First, a high-level specification is written employing mathematical
data types the implementability of which is ignored for the time being. Then a
lower-level specification is written which makes use of data types that are closer
to the sorts of data type found in modern imperative programming languages (like
Pascal and Modula). Various proof-obligations have to be discharged in order for the
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lower-level specification to be a correct refinement or reification of the higher-level
specification.1 This process of decomposition may have to be repeated several times.
Eventually, a fairly low-level and concrete specification is arrived at.

Until recently, little if any formal work has been done on the problem of turning a
low-level Z specification into a program. Spivey (1989), pp. 12–19, uses the reification
approach, while Morgan (1990) has devised a special refinement calculus. In this
paper I wish to suggest a different approach and that is to use a Hoare logic to
bridge the gap between a low-level Z specification and the program that implements
it. (Refining abstract specifications to concrete ones is still done as mentioned above.)

I think that this approach has much to recommend it. The use of Hoare log-
ics is well understood. (See, for example, the books by Alagić and Arbib, (1978),
Gries (1981), Backhouse (1986), Baber (1987), Gumb (1989), Dromey (1989) and
Kaldewaij (1990).) Rather than devising new techniques to relate specifications and
programs I think that tried-and-tested methods should be investigated first to see if
they will work with Z specifications. In this paper I show that it is straightforward
to relate a program to a Z specification by means of a few partial correctness spec-
ifications. The complications found in chapter 10 of Jones (1986) arising from the
combination of VDM specifications and Hoare logics do not appear here. Sticking to
a few simple conventions allows us to use the standard form of a Hoare logic.

A Small Specification

In order to illustrate how Z specifications can be related to programs by means of a
Hoare logic I shall consider a very simple specification as my example. The state of
this specification is given by the schema Table. This contains just one variable t and
no predicates. The variable t can be thought of as an array of ten integers.

Table
t: 1 . . 10→ Z

The schemas ∆Table and ΞTable are defined in the usual way.

∆Table
∧
= Table ∧ Table ′,

ΞTable
∧
= ∆Table | t′ = t.

In the initial state all the elements of the array t′ are set to 0.

InitTable ′ ∧
= Table ′ | ∀i: 1 . . 10 • t′(i) = 0.

Several operations will now be defined on this simple specification. The first, namely
Update, just alters the value of one element in the array. The new value is represented
by v? and the number p? indicates which array element is being updated.

1Details can be found in Diller (1990), chapter 13, and Spivey (1989), pp. 3ff.
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Update
∆Table
p?:N
v?:Z

p? ∈ 1 . . 10
t′ = t⊕ {p? 7→ v?}

The second operation, namely LookUp, finds out what the value of a particular array
element is. The position of the required element is given by p? and the result is
placed in v!

LookUp
ΞTable
p?:N
v!:Z

p? ∈ 1 . . 10
v! = t(p?)

The third operation, namely Sum, sums together the values of all the elements in
the array and puts the result into the output variable out !

Sum
ΞTable
out !:Z

out ! =
i=10∑
i=1

t(i)

Summation is not part of standard Z as defined by Spivey (1989), but its meaning
is so clear that there can be no harm in using it in specifications.

Obtaining Partial Correctness Specifications

Given a Z schema, like Update, it is easy to derive a partial correctness specification
{P} Γ {Q} from it that any command Γ must satisfy in order to be a correct imple-
mentation of the original Z schema. The Greek letter Γ here takes the place of the
command that we have to find in order to implement the Z schema we started from.

The first step in deriving {P} Γ {Q} is to calculate the precondition schema of
Update. A precondition schema is obtained from a given schema by hiding all the
after and output variables. Thus, PreUpdate is given as follows:
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PreUpdate
t: 1 . . 10→ Z
p?:N
v?:Z

∃t′: 1 . . 10→ Z •
p? ∈ 1 . . 10 ∧ t′ = t⊕ {p? 7→ v?}

This can be simplified to the following form:

PreUpdate
t: 1 . . 10→ Z
p?:N
v?:Z

p? ∈ 1 . . 10

The precondition P of the partial correctness specification that we are after is formed
by constructing the conjunction of the predicate part of the precondition schema
PreUpdate together with a predicate that consists of several identity statements.
These identity statements provide the link between the Z specification and the actual
program.2 We require one identity statement for each variable declared in PreUpdate.
(Because PreUpdate is obtained by hiding all after and output variables in Update all
the variables it contains will be either before variables or input ones.) Each identity
statement asserts the equality of a specification variable with a program variable.
The program variables that are chosen must be entirely new, that is to say, they
must be distinct from every variable occurring in our Z specification. In this paper I
use the convention that program variables are written entirely in uppercase letters.
Thus, the precondition that we are after is the predicate:

PreUpdate ∧ T = t ∧ P = p? ∧ V = v?,

where T , P and V are entirely new program variables.
Similarly, the postcondition of the partial correctness specification that we after

consists of the conjunction of the predicate part of the schema Update together with
a predicate that consists of several identity statements. If a before state variable t
has been associated with a program variable T in the precondition part of our partial
correctness specification, then the after state variable t′ is associated with the same
variable T in the postcondition. If an input variable p? has been associated with
a program variable P in the precondition, then it must be identified with the same
program variable in the postcondition. Thus, the postcondition we are after is:

Update ∧ T = t′ ∧ P = p? ∧ V = v?

2According to G. Polya, ‘Setting up equations is like translating from one language into another.’
(Quoted from Jones (1986), p. 23, where no reference is given.)
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Putting all this together we obtain the partial correctness specification:

` {PreUpdate ∧ T = t ∧ P = p? ∧ V = v?} Γ1 {Update ∧ T = t′ ∧ P = p? ∧ V = v?}.

Here, Γ1 represents the programming language commands that we are trying to find
in order to implement Update. Replacing the schema names PreUpdate and Update
by their respective predicates results in the partial correctness specification:

` {p? ∈ 1 . . 10 ∧ T = t ∧ P = p? ∧ V = v?}
Γ1

{p? ∈ 1 . . 10 ∧ t′ = t⊕ {p? 7→ v?} ∧ T = t′ ∧ P = p? ∧ V = v?}.

I shall call such a partial correctness specification unsimplified because clearly both
the precondition and the postcondition can be considerably simplified by appropriate
substitutions of equals for equals. Thus, any Γ1 which satisfies the following partial
correctness specification also satisfies the one just given:3

` {p? ∈ 1 . . 10 ∧
T = t ∧
P = p? ∧
V = v?}
Γ1

{p? ∈ 1 . . 10 ∧
T = t⊕ {P 7→ V } ∧
P = p? ∧
V = v?}.

Written in this form a suitable command Γ1 is not difficult to find. It is T :=
T ⊕ {P 7→ V } which is usually written in imperative programming languages as
T [P ] := V .4

Note that in order not to unduly complicate matters I have left type information
in the partial correctness specification at an intuitive level. Thus, for example, it is
not formally stated that T is an array variable.

We can go through the same steps with the schema LookUp. First, we form the
precondition schema PreLookUp.

PreLookUp
t: 1 . . 10→ Z
p?:N

∃t′: 1 . . 10→ Z; v!:Z •
p? ∈ 1 . . 10 ∧ v! = t(p?) ∧ t′ = t

3To make these two partial correctness specifications identical several identity statements would
have to added to the second one.

4Using the notation T := T ⊕ {P 7→ V } for altering the component of an array allows us to use
the usual Hoare logic axiom for assignment.
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This simplifies to the following:

PreLookUp
t: 1 . . 10→ Z
p?:N

p? ∈ 1 . . 10

Thus, the required partial correctness specification is:

` {PreLookUp ∧ T = t ∧ P = p?} Γ2 {LookUp ∧ T = t′ ∧ P = p? ∧ V = v!}.

When written out in full this partial correctness specification is as follows:

` {p? ∈ 1 . . 10 ∧ T = t ∧ P = p?}
Γ2

{p? ∈ 1 . . 10 ∧ v! = t(p?) ∧ t′ = t ∧ T = t′ ∧ P = p? ∧ V = v!}.

A suitable Γ2 is V := T [P ].
Things are slightly more interesting when we come to the operation specified by

the schema Sum. First, we work out the precondition schema PreSum:

PreSum
t: 1 . . 10→ Z

∃t′: 1 . . 10→ Z; out !:Z •

out ! =
i=10∑
i=1

t(i) ∧ t′ = t

This simplifies to the following:

PreSum
t: 1 . . 10→ Z

The partial correctness specification that we are after is, therefore:

` {PreSum ∧ T = t} Γ3 {Sum ∧ T = t′ ∧OUT = out !}.

Here, Γ3 represents the programming language commands that we are after which
will implement the schema Sum. Writing out this partial correctness specification in
full gives us:

` {T = t} Γ3 {t′ = t ∧ out ! =
i=10∑
i=1

t(i) ∧ T = t′ ∧OUT = out !} (1)
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It is not difficult to see that the following command is a suitable Γ3:
5

begin new I;

∆



OUT := T [1];
I := 1;

}
∆1

while I 6= 10 do

∆3

{
I := I + 1;
OUT := OUT + T [I]

∆2

end

It is straightforward to show that this command is a suitable Γ3 by means of the
usual axioms and rules of a Hoare logic as found, for example, in Hoare (1969) and
Hoare (1971). I will just give a sketch of the proof here.6

Clearly, any command Γ3 which satisfies:

` {T = t} Γ3 {OUT =
i=10∑
i=1

T [i] ∧ T = t} (2)

also satisfies (1), so I will concentrate on (2). As I do not allow any specification
variables, such as t, to occur in the commands that implement them (2) follows by
specification conjunction from ` {T = t} Γ3 {T = t} and:

` {true} Γ3 {OUT =
i=10∑
i=1

T [i]} (3)

So, I will concentrate my attention on establishing (3).
Using the assignment axiom twice and the sequencing rule it is easy to show that:

OUT =
i=I∑
i=1

T [i]

is an invariant of the command ∆3. So, by precondition strengthening we get:

` {OUT =
i=I∑
i=1

T [i] ∧ I 6= 10} ∆3 {OUT =
i=I∑
i=1

T [i]}.

From this, by the rule for the while-loop, we can infer that:

` {OUT =
i=I∑
i=1

T [i]} ∆2 {OUT =
i=I∑
i=1

T [i] ∧ I = 10},

5When subscripting arrays I write, for example, T [I], but when applying a function to an argu-
ment I use the notation t(i). It would have been possible to use the same notation for both, but the
practice employed is more common.

6The axioms and rules that I use in this proof sketch are summarised in the appendix to this
paper.
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and this is clearly the same as:

` {OUT =
i=I∑
i=1

T [i]} ∆2 {OUT =
i=10∑
i=1

T [i]}. (4)

This completes that part of this proof dealing with the while-loop.
Using the assignment axiom twice and the sequencing rule it is straightforward

to show that:
` {true} ∆1 {I = 1 ∧OUT = T [I]}.

As the postcondition of this implies the precondition of (4) we have:

` {true} ∆ {OUT =
i=10∑
i=1

T [i]}.

From this, by means of the block rule we can infer:

` {true} Γ3 {OUT =
i=10∑
i=1

T [i]},

which is what I set out to prove initially. This completes this proof.
In real-life schemas are usually implemented by procedures (or functions). This

could be done in this case. The resulting procedures might be:

procedure UPDATE (in P, V ); Γ1

procedure LOOKUP (in P ;out V ); Γ2

procedure SUM (out OUT ); Γ3

In doing this the array variable T is being treated as a global variable.

General Applicability

In the previous section I used an extremely simple example of a Z specification
to illustrate how it can be related to a program by means of a Hoare logic. In this
section I want to show that the method is more widely applicable by applying it to one
operation of the birthday book specification developed in chapter 1 of Spivey (1989).
The operation in question is that of adding birthday information to a birthday book:

AddBirthday1
∆BirthdayBook1
name?: Name
date?: Date

∀i: 1 . . hwm • name? 6= names(i)
hwm ′ = hwm + 1
names ′ = names ⊕ {hwm ′ 7→ names?}
dates ′ = dates ⊕ {hwm ′ 7→ date?}
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Using the method explained in the previous section it is straightforward to derive
the following partial correctness specification from AddBirthday1 :

` {∀i: 1 . . hwm • name? 6= names(i) ∧
NS = names ∧DS = dates ∧H = hwm ∧N = name? ∧D = date?}
Γ

{∀i: 1 . . hwm • name? 6= names(i) ∧
hwm ′ = hwm + 1 ∧
names ′ = names ⊕ {hwm ′ 7→ names?} ∧
dates ′ = dates ⊕ {hwm ′ 7→ date?} ∧
NS = names ′ ∧DS = dates ′ ∧H = hwm ′ ∧N = name? ∧D = date?}.

Here Γ holds the place for the command that we are after that implements the oper-
ation specified by AddBirthday1 . This unsimplified partial correctness specification
can be transformed and rewritten as follows:

` {∀i: 1 . . H • N 6= NS [i] ∧
H = hwm ∧
NS = names ∧
DS = dates ∧
N = name? ∧
D = date?}
Γ

{∀i: 1 . . H • N 6= NS [i] ∧
H = hwm + 1 ∧
NS = names ⊕ {H 7→ N} ∧
DS = dates ⊕ {H 7→ D} ∧
N = name? ∧
D = date?}.

Note that—as previously—I have left out some identity statements for clarity. When
the partial correctness specification is written in this way the implementation almost
jumps out at you from the page. It is not difficult to see that a suitable version of
the command Γ is:

H := H + 1;

NS := NS ⊕ {H 7→ N};
DS := DS ⊕ {H 7→ D}

As already mentioned, the notation NS [H] := N is more usual in programming
languages than the form NS := NS ⊕ {H 7→ N}.
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Conclusion

In this paper I have shown how a Z specification can be related to a programming
language command by means of a Hoare logic. The conventions that I have employed
are as follows:

(1) Program variables must be chosen that are different from all the variables used
in the Z specification we are trying to implement.

(2) In an unsimplified partial correctness specification a conjunct containing both
a program variable, X say, and a Z specification variable, x say, must be an
identity statement of the form X = x (or, of course, x = X).

(3) If a program variable, X say, is identified with a before Z specification variable,
x say, in the precondition of an unsimplified partial correctness specification,
then the same program variable must be identified with the corresponding after
variable x′ in the postcondition.

(4) If a program variable, P say, is identified with an output variable, p? say, in
the precondition of an unsimplified partial correctness specification, then the
same program variable must be identified with the same input variable in the
postcondition of the same partial correctness specification.

I have also shown how to derive a partial correctness specification containing a
dummy command Γ from a Z schema specifying an operation employing the usual
convention to distinguish between before and after variables.

Appendix: Hoare Logic Proof Rules Used

Assignment
` {P [E/V ]} V := E {P},

where P [E/V ] stands for the result of substituting E for all the free occurrences of
V in P .

Sequencing
` {P0} Γ1 {P1} ` {P1} Γ2 {P2}

` {P0} Γ1; Γ2 {P2}
;-int

While-loops
` {P ∧ S} Γ {P}

` {P} while S do Γ {P ∧ ¬S} while-int
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Blocks and Local Variables The rule for blocks that I have used is from Hoare
(1971) where, on p. 109, it is stated in this form:

` {P} Γ[Y/X] {Q}
` {P} begin new X; Γ end {Q} block-int

where Y is not free in P or Q and it does not occur in Γ, unless Y is the same
variable as X.
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