
Efficient Bracket Abstraction Using
Iconic Representations for Combinators

Antoni Diller
School of Computer Science,
University of Birmingham,
Birmingham, B15 2TT, UK

A.R.Diller@cs.bham.ac.uk

September 2011

Abstract

Some fundamental properties of a new uni-variate bracket abstraction algorithm employ-
ing a string representation for combinators are established. In particular, if the input term
has length n, where n > 1, the algorithm is called fewer than n times to produce the
abstract. Furthermore, the space required to store the abstract, in the worst case, is of the
order O(n). This algorithm also has a number of features that make it worthy of further
attention. When it is used to abstract a variables from an input term of length n, where
n > 1, fewer than an new combinators are introduced into the abstract. However, the
total size of the string representations of these combinators grows quadratically in the
number of variables abstracted and the space required to store the abstract, in the worst
case, is of the order O(a2n). Fortunately, a closely related single-sweep, multi-variate al-
gorithm exists, using an array representation for combinators, which produces an abstract
whose storage requirement, in the worst case, is of the order O(an).

1 Introduction

Uni-variate bracket abstraction in combinatory logic is a syntactic operation which removes
a single variable x from a term X , written [x]X , satisfying the property that ([x]X)P →
[P/x]X , where the arrow represents reduction and [P/x]X is the result of substituting P for
all free occurrences of x in X . The abstract [x]X plays a similar role in systems of combina-
tory logic to that played by λx.X in systems of the λ-calculus.

The first abstraction algorithm in combinatory logic was devised at the same time as the
subject was created [12] and over the years a large number of abstraction algorithms have been
proposed [8]. For several years after Turner [14] proposed an algorithm that could be used to
implement a usable functional language [15] a great deal of research effort was directed to
devising better and more efficient algorithms. However, other ways of implementing func-
tional languages have become standard, because they produce faster implementations. Such

1



2 Efficient Bracket Abstraction

methods include those employing super-combinators [10]. However, research on abstraction
algorithms continues.

A significant new development in the design of abstraction algorithms was heralded in the
work of Stevens [13]. Before he presented his algorithm, all abstraction algorithms used non-
iconic representations for combinators. In such a notation the connection between a combina-
tor’s name and its behaviour is given by an arbitrary stipulation. The names of the commonest
combinators S, K, I, B and C are examples of non-iconic representations. The name B, for
example, gives no indication of how the combinator B behaves; you have to be told how it
behaves. Stevens [13] introduced the first iconic representations for combinators. In an iconic
representation the behaviour of a combinator is read off from its representation. (Director
strings [9] can be thought of as a precursor to iconic representations, but director strings are
not names of combinators; the director-string calculus is a different formal system from com-
binatory logic.) Not long ago Broda and Damas devised an interesting and efficient algorithm
[2] which, in effect, uses an iconic representation, but different from Stevens’s. My work falls
into this new area of research. However, my way of representing combinators differs from
both that employed by Stevens and by Broda and Damas; it represents combinators as strings
of the letters y and n.

2 Fixing Terminology

There are several systems of combinatory logic. The one used here is weak combinatory logic.
On the whole, standard terminology is used [7]. Assume given an infinite sequence of symbols
called variables and two constants, K and S, called basic combinators. The letters v, w, x,
y and z, sometimes decorated with subscripts, are used for variables. An atom is a variable
or a constant. A term is defined thus: (a) Every variable is a term; (b) Every constant is a
term; (c) If P and Q are terms, so is (PQ). The letters E, F , G, H , K, P , Q, R, S, T ,
X and Y , sometimes decorated with subscripts and superscripts, are used for terms. A term
of the form (PQ) is an application, but the outermost pair of parentheses is usually omitted.
Normally, no space is left between the terms of an application, but sometimes one will be
inserted for clarity and readability. Application associates to the left, so PQRST is the same
as (((PQ)R)S)T . The symbol ≡ represents syntactic identity: P ≡ Q means that P and Q
are exactly the same term. Because combinatory logic contains no variable-binding operators
every variable in a term is free: FV(P ) represents the set of free variables in P . The length of
P , written #P , is the number of occurrences of atoms in P . A subterm is defined thus: (a) P
is a subterm of P ; (b) P is a subterm of QR if P is a subterm of Q or P is a subterm of R.
Every term P can be uniquely expressed in the form P1P2 . . . Pm, where P1 is an atom and
m ≥ 1. The Pi are known as the primal components of P [1, p. 223]. The non-standard notion
of a subprimal component is defined thus: (a) P is a subprimal component of P ; (b) P is a
subprimal component of Q if P is a subprimal component of one of the primal components
of Q. For example, the subprimal components of vw(x(yz)) are: vw(x(yz)), v, w, x(yz), x,
yz, y and z.

The non-standard notation rp(P ) denotes the number of distinct non-atomic subprimal
components of P other than P itself. Thus, rp

�
vw(x(yz))

�
= 2. There is a simpler way to

work out what rp(P ) is. If P is represented using the fewest possible parentheses, then rp(P )



Antoni Diller 3

is equal to the number of right parentheses in P . (The letters ‘rp’ stand for ‘right parentheses’.)
Let P ≡ P1P2 . . . Pm, where P1 is an atom. Then

rp(P ) =
m�

i=1

if #Pi = 1 then 0 else 1 + rp(Pi).

Putting a conditional inside a summation may be unusual, but its meaning is straightforward
and explained fully elsewhere [6, p. 312]. If #P ≥ 2, then the minimum value of rp(P )
is 0 and its maximum value is #P − 2. This maximum value occurs when P looks like
v(w(x(yz))), say.

The non-standard notation rpx (x, P ) is used to denote the number of distinct non-atomic
subprimal components of P , other than P itself, that contain at least one occurrence of x. For
example, rpx

�
x, vw(x(yz))

�
= 1. If P is represented using the fewest possible parentheses,

then rpx (x, P ) is equal to half the number of parentheses that enclose subprimal components
containing the variable x. (A parenthesis is counted only once even if it encloses more that
one occurrence of the variable x.) Let P ≡ P1P2 . . . Pm, where P1 is an atom. Then

rpx (x, P ) =
m�

i=1

if Pi �≡ x and x ∈ FV(Pi) then 1 + rpx (x, Pi) else 0.

If #P ≥ 2, then the minimum value of rpx (x, P ) is 0 and its maximum value is #P − 2.
The maximum value occurs when P looks like x(y(z(xx))), say. It should also be noted that
rpx (x, P ) ≤ rp(P ), for all variables x and terms P . (Both rp(P ) and rpx (x, P ) are useful in
proving results about algorithms using string combinators because of the way in which those
algorithms work.)

A term of the form KPQ or SPQR is a redex. Contracting an instance of a redex in a term
S means replacing one occurrence of KPQ by P or one occurrence of SPQR by PR(QR).
Let the result be T . Then we say that S contracts to T , written S →1 T , and that T is the
contractum. The arity of a basic combinator is the least number of terms it has to be followed
by for it to be possible to contract it. Thus, the arity of K is 2 and the arity of S is 3. S is
said to reduce to T , written S → T , iff T results from S by carrying out a finite (possibly
zero) number of contractions. Combinators I, B, B�, C, C� and S� can be defined in terms
of K and S: I ∧

= SKK, B ∧
= S(KS)K, B� ∧

= BB, C ∧
= S(BBS)(KK), C� ∧

= B(BC)B and
S� ∧

= B(B(BS)S)K. We then have: IP → P , BPQR → P (QR), B�PQRS → PQ(RS),
CPQR → PRQ, C�PQRS → P (QS)R and S�PQRS → P (QS)(RS).

Substituting the term P for every free occurrence of x in X , written [P/x]X , is defined
in the following way: (a) [P/x]x ≡ P ; (b) [P/x]Y ≡ Y , if Y is an atom distinct from x;
(c) [P/x]QR ≡ ([P/x]Q)([P/x]R). Uni-variate bracket abstraction is a syntactic opera-
tion which removes a variable x from a term X , written [x]X , satisfying the property that
([x]X)P → [P/x]X . If [x]X = Q, then X is the input term and Q the abstract. Multi-

variate bracket abstraction, written [x1, x2, . . . , xa]X , removes several variables from a term
X . There are two types of multi-variate abstraction: in the multi-sweep variety we have
[x1, x2, . . . , xa]X

∧
= [x1]([x2](. . . ([xa]X) . . .)), whereas in the single-sweep variety the a

variables are abstracted simultaneously in a single process. In this paper, unless explicitly
stated otherwise, bracket abstraction shall mean uni-variate abstraction.



4 Efficient Bracket Abstraction

There are many abstraction algorithms. Turner’s was the first to be used in a viable im-
plementation of a functional language [15]. The following is a slightly improved version of
Turner’s algorithm which elsewhere [5, p. 98] I have called algorithm (C). In this algorithm x
cannot occur in either E or F , but must occur in both X and Y . Furthermore, the clauses of
the algorithm have to be applied in the order given:

[x]E = KE,

[x]x = I,
[x]Ex = E,

[x]EFX = B�EF ([x]X),

[x]EXF = C�E([x]X)F,

[x]EXY = S�E([x]X)([x]Y ),

[x]EX = BE([x]X),

[x]XE = C([x]X)E,

[x]XY = S([x]X)([x]Y ).

(Bunder [3, pp. 659–660] explains how this algorithm, which he calls (abcd�e�f �def), differs
from that devised by Turner [14]. The differences are not important here.)

3 Contraction

The algorithm presented in the next section employs a non-standard notation for combinators.
This represents them as strings of the letters y and n, called yn-strings. These are examples
of what Stevens [13] calls iconic representations. (His approach also uses a string notation for
combinators, but the meaning of the two notations is completely different.) Thus, the letters
y and n are known as iconic letters. The letter φ is used for an arbitrary yn-string. size(φ)
is the number of occurrences of y and n in φ and φi, for 1 ≤ i ≤ size(φ), is the ith letter in
φ. String concatenation is represented by juxtaposition. As yn-strings represent combinators,
they are considered to be constants and, thus, atoms. Thus, if φ is a yn-string, then #φ = 1.
(This is acceptable from a mathematical point of view, and it simplifies many proofs, but from
a computing perspective we need to take into account the amount of space required to store
a yn-string. I will say more about this below.) Let φ be a yn-string. Then a φ-redex is any
term of the form φP1P2 . . . Pm+1, where m = size(φ). Thus, the arity of any yn-string φ is
1+ size(φ). Contracting an instance of a φ-redex in a term S means replacing one occurrence
of φP1P2 . . . Pm+1 by Q1Q2 . . . Qm, where, for 1 ≤ i ≤ m,

Qi ≡
�
Pi Pm+1, if φi = y;
Pi, if φi = n.

As an example, consider the yn-string ynyyn:

ynyyn P1 P2 P3 P4 P5 P6 → P1 P6 P2 (P3 P6) (P4 P6) P5.

All the combinators introduced above, except I, can be represented using yn-strings: K is n,
S is yy, B is ny, B� is nny, C is yn, C� is nyn and S� is nyy.



Antoni Diller 5

4 Translation

There is some superficial resemblance between yn-strings and the director strings of Kenn-
away and Sleep [9]. There are, however, several significant differences. One is that Kennaway
and Sleep’s director-string calculus is a formal system completely different from combinatory
logic, whereas the approach taken in this paper is to work within combinatory logic, but to
represent combinators iconically. However, just because we can devise a method for contract-
ing yn-strings, that does not mean that they really do represent combinators. It is possible to
devise apparently meaningful contractions for non-existent combinators. For example, it can
be proved that there is no combinator A such that AX contracts to S, when X is not an atom,
and to K, when X is an atom. If there were such a combinator, we would have that A(Ix) → S
and also that A(Ix) → Ax → K. As K and S are distinct, there is no such combinator as A.

To show that yn-strings really are combinators it is necessary to show how every yn-string
can be translated into a combination of the constants K and S. First define the constants B, I
and C in terms of K and S. Then define the combinators Bi, for i ≥ 1, as follows:

Bi
∧
=

�
B, if i = 1,

B Bi−1 B, if i > 1.

From this definition we have that Bixy1y2 . . . yiz → x(y1y2 . . . yiz). Let φ be a yn-string.
Then the translation proceeds as follows:

trans(y) = B I,
trans(n) = K,

trans(φy) = Bi S trans(φ), if size(φ) ≥ 1,

trans(φn) = Bi C trans(φ), if size(φ) ≥ 1,

where i = size(φ). For example, trans(ynyyn) = B4 C (B3 S (B2 S (B1 C (B I)))).

Theorem 1 The translation function trans is correct in the sense that if

φ P1 P2 . . . Pm Pm+1 → Q1 Q2 . . . Qm,

where m = size(φ) and the Qi, for 1 ≤ i ≤ m, are as given above, then

trans(φ) P1 P2 . . . Pm Pm+1 → Q1 Q2 . . . Qm.

Proof In order to prove that the translation is correct it is necessary to show that

trans(φ) P1 P2 . . . Pm Pm+1 → Q1 Q2 . . . Qm,

where m = size(φ) and, for 1 ≤ i ≤ m,

Qi ≡
�
Pi Pm+1, if φi = y,
Pi, if φi = n.



6 Efficient Bracket Abstraction

The proof is by induction on the size of φ1φ2 . . .φm. In the base case m = 1. There are two
cases to consider. Either φ1 = y or φ1 = n. When φ1 = y, trans(y) P1 P2 = B I P1 P2 →
I (P1 P2) → P1 P2. When φ1 = n, trans(n) P1 P2 = K P1 P2 → P1. Both of these accord
with the behaviour of y and n given above. Thus, the base case has been established.

To prove the inductive step we first assume that the result holds for m − 1. There are
two cases to consider. In the first we look at φ1φ2 . . .φm−1y and in the second we consider
φ1φ2 . . .φm−1n. In the first case we have:

trans(φ1φ2 . . .φm−1y) P1 . . . Pm Pm+1

= Bm−1 S trans(φ1φ2 . . .φm−1) P1 . . . Pm Pm+1

→ S (trans(φ1φ2 . . .φm−1) P1 . . . Pm−1) Pm Pm+1

→ trans(φ1φ2 . . .φm−1) P1 . . . Pm−1 Pm+1 (Pm Pm+1)

→ Q1 . . . Qm−1 (Pm Pm+1),

where, for 1 ≤ i ≤ m− 1,

Qi ≡
�
Pi Pm+1, if φi = y;
Pi, if φi = n;

by the inductive hypothesis. In the second case we have:

trans(φ1φ2 . . .φm−1n) P1 . . . Pm Pm+1

= Bm−1 C trans(φ1φ2 . . .φm−1) P1 . . . Pm Pm+1

→ C (trans(φ1φ2 . . .φm−1) P1 . . . Pm−1) Pm Pm+1

→ trans(φ1φ2 . . .φm−1) P1 . . . Pm−1 Pm+1 Pm

→ Q1 . . . Qm−1 Pm,

where, for 1 ≤ i ≤ m− 1,

Qi ≡
�
Pi Pm+1, if φi = y;
Pi, if φi = n;

by the inductive hypothesis. Combining these two cases yields a rule for the reduction of
trans(φ1φ2 . . .φm) which accords with the reduction rule for φ1φ2 . . .φm given above. The
result follows by induction. QED.

Some people have seen a similarity between yn-strings and Broda–Damas combinators
[2, 4]. There is a superficial similarity of notation. However, the principles underlying the
two approaches are radically different. Unfortunately, I do not have space to discuss Broda–
Damas combinators at length. I will just make two points: (1) The collection of Broda–Damas
combinators and the set of combinators that can be represented by yn-strings are not iden-
tical and neither is a subset of the other. (2) The way in which Broda and Damas represent
combinators is more complicated than mine. The set of Broda–Damas indices BD is defined
thus: (a) The empty word � and the letters b and c are members of BD. (b) If α,β ∈ BD, then



Antoni Diller 7

In this algorithm P1 must be an atom. The variable x can occur in any of the primal compo-
nents Pi, for 1 ≤ i ≤ m, but it does not have to occur in any of them.

[x] P1 P2 . . . Pm = φ1φ2 . . .φm Q1 Q2 . . . Qm,

where φ is a yn-string and, for 1 ≤ i ≤ m,

φi = y and Qi ≡ I, if Pi ≡ x,

φi = y and Qi = [x] Pi, if Pi �≡ x, but x ∈ FV(Pi),

φi = n and Qi ≡ Pi, if x /∈ FV(Pi).

Figure 1: Algorithm (L).

c ·α, b ·α, (α,β) ∈ BD. They usually omit the dot, which represents concatenation. Examples
of indices are: cbb, bcbb, cbcbcbbc, (�, bcbb), (bcbc, (cc, bcbc)) and ((bcc, cb), (cbc, (bb, cc))).
These indices are, in effect, iconic representations of combinators, but Broda and Damas ac-
tually use the notation Φα, where α is an index, to indicate a combinator. They also use K as
a basic combinator. In their notation, I is Φ�, S is Φ(b,b) and B is Φbb. Combinators B�, C, C�

and S� cannot be expressed as single Broda–Damas combinators, but have to be defined.

5 Abstraction

The new uni-variate abstraction algorithm presented in this section employs yn-strings to refer
to combinators. The combinator I is also used. Algorithm (L) is shown in Fig. 1. The reasons
for insisting that P1 is an atom and for excluding the clause [x]Ex = E, when x �∈ FV(E),
will be explained below. The clause [x]x = I is absent from (L) in order to simplify certain
proofs. Its presence would not alter (L)’s operation much as it would only be used when the
input term was the variable x. When the input term X is such that #X > 1 and x ∈ FV(X),
then the treatment of the occurrences of x in X would not be affected by the presence of the
clause [x]x = I.

An example of the application of (L) should make its operation clear:

[x] x (y z) (z y x) (z (x y)) = ynyy I (y z) ([x] z y x) ([x] z (x y))

= ynyy I (y z) (nny z y I) (ny z ([x] x y))

= ynyy I (y z) (nny z y I) (ny z (yn I y)).

In the context of abstraction, the letter y means that the primal component to which it corre-
sponds contains the abstraction variable. (The letter φi, for 1 ≤ i ≤ m, is said to correspond

to the primal component Pi.) The letter n means that the primal component to which it corre-
sponds does not contain the abstraction variable.

Some of the basic properties of (L) are stated in the following theorem.

Theorem 2 Let P and Q be terms. Then algorithm (L) has the following properties:



8 Efficient Bracket Abstraction

(a) If algorithm (L) is applied to P , it will terminate.

(b) Algorithm (L) has the property that ([x]P )Q → [Q/x]P .

(c) Using algorithm (L) we have that #([x]P ) = 1 +#P + rpx (x, P ).

(d) If #P ≥ 2, then #([x]P ) ≤ 2× (#P )− 1.

Proof The proofs of parts (a), (b) and (c) are all by complete induction on the value of
rpx (x, P ). Part (d) is a straightforward corollary of part (c) and the properties of rpx (x, P ).
The proofs are all relatively straightforward and so only that of part (c) will be given here.

Proof of part (c): The proof is by complete induction on the value of rpx (x, P ). In the
base case rpx (x, P ) = 0. Let P ≡ P1P2 . . . Pm, where P1 is an atom. For 1 ≤ i ≤ m, either
Pi ≡ x or Pi is a term such that x /∈ FV(Pi). Using (L) we have that [x]P = φQ1Q2 . . . Qm,
where φ and the Qi, for 1 ≤ i ≤ m, are as specified in Fig. 1. When Pi ≡ x, then Qi ≡ I.
When Pi is a term such that x /∈ FV(Pi), then Qi ≡ Pi. In both cases #Qi = #Pi, for
1 ≤ i ≤ m. Thus, #([x]P ) = 1 +#P . Thus the base case has been established.

In the inductive step rpx (x, P ) > 0. Let P ≡ P1P2 . . . Pm, where P1 is an atom. For
1 ≤ i ≤ m, either Pi ≡ x or Pi is a term such that x /∈ FV(Pi) or Pi �≡ x and x ∈ FV(Pi).
Using (L) we have that [x]P = φQ1Q2 . . . Qm, where φ and the Qi, for 1 ≤ i ≤ m, are as
specified in Fig. 1. When Pi ≡ x, then Qi ≡ I. When Pi is a term such that x /∈ FV(Pi), then
Qi ≡ Pi. In both these cases #Qi = #Pi. When Pi �≡ x and x ∈ FV(Pi), then Qi = [x]Pi

and #Qi = 1 + #Pi + rpx (x, Pi), by the inductive hypothesis. We thus have, where Ai

abbreviates ‘x ≡ Pi or x /∈ FV(Pi)’:

#([x]P ) = 1 +
m�

i=1

if Ai then #Pi else 1 + #Pi + rpx (x, Pi)

= 1 +#P +
m�

i=1

if Ai then 0 else 1 + rpx (x, Pi)

= 1 +#P + rpx (x, P ),

by properties of rpx (x, P ). The result follows by complete induction. QED.

The length of [x]P , if #P ≥ 2, has its largest value when rpx (x, P ) has its maximum value.
For example, let Q ≡ x(y(z(xx))). Then [x]Q = yy I (ny y (ny z (yy I I))) and #([x]Q) =
9.

Result (2c) enables us to calculate the number of times that (L) is called in order to produce
an abstract. When (L) is used to produce an abstract, each variable in the input term, distinct
from the abstraction variable, reappears in the abstract. Each constant in the input term also
reappears in the abstract. Each occurrence of the abstraction variable in the input term is
replaced by an occurrence of the combinator I in the abstract. Thus, by result (2c), the number
of new yn-strings introduced into the abstract is 1 + rpx (x, P ). As one new yn-string is
introduced into the abstract each time (L) is called, it is called a total of 1 + rpx (x, P ) times.
If #P = n and n > 1, this means that (L) is called at most n− 1 times.

So far I have been assuming that the length of a yn-string is one. This is reasonable from
a mathematical point of view, but if we are interested in the space complexity of (L), then this



Antoni Diller 9

assumption needs amending. Let il(x, P ) be the number of new iconic letters introduced by
(L) when it is used to produce [x]P . Then we have the following result:

Theorem 3 Using (L), il(x, P ) ≤ #P + rpx (x, P ).

Proof The proof is by complete induction on the length of P . In the base case #P = 1,
so P ≡ x or P ≡ Y , where Y is an atom distinct from x. When P ≡ x, [x]P = y I and
so il(x, P ) = 1. When P ≡ Y , where Y is an atom distinct from x, [x]P = n Y and so
il(x, P ) = 1. As rpx (x, P ) = 0 in both case, the base case has been established.

In the inductive step #P > 1. Let P ≡ P1P2 . . . Pm be a term, where P1 is an atom.
Also, let Bi abbreviate ‘Pi �≡ x and x ∈ FV(Pi)’. Then

il(x, P ) =
m�

i=1

if Bi then 1 + il(x, Pi) else 1

≤
m�

i=1

if Bi then 1 + #Pi + rpx (x, Pi) else #Pi,

by using the inductive hypotheses il(x, Pi) ≤ #Pi + rpx (x, Pi), for 1 ≤ i ≤ n, in the
then-clause and the fact that 1 ≤ #Pi in the else-clause,

≤
m�

i=1

#Pi +
m�

i=1

if Bi then 1 + rpx (x, Pi) else 0

≤ #P + rpx (x, P ),

using the properties of rpx . Thus, the inductive step has been established and the result follows
by complete induction. QED.

The maximum value that rpx (x, P ) can take, when #P = n and n > 1, is n − 2. Thus,
by Theorem 3, the maximum number of iconic letters that can be introduced by using (L) is
2(n − 1). Assuming that each occurrence of an iconic letter requires the same storage space
as a variable or non-iconic combinator, we have that the maximum amount of space required
to store the abstract is 3n− 2. Thus, in the worst case, the space required to store the abstract
produced by (L) is of the order O(n).

I have assumed that each occurrence of an iconic letter requires the same storage space
as a variable or non-iconic combinator because Broda and Damas make a similar assumption
in working out the complexity of their algorithm. They take into account all occurrences of
parentheses, commas and the letters b and c in their indices [2, p. 737]. With this assumption
their algorithm also produces an abstract which, in the worst case, has a storage requirement
of the order O(n). At first sight, it may thus appear that there is little to choose between
their algorithm and mine. However, digging deeper we see that only considering the space
required to store the abstracts produced by different algorithms is not an entirely reliable guide
to their efficiency. The Broda–Damas algorithm is a two-stage one. In the first stage they use
Schönfinkel’s algorithm to produce an abstract. (Schönfinkel’s algorithm is obtained from
algorithm (C) by removing the three clauses involving B�, C� and S�.) In the second stage of



10 Efficient Bracket Abstraction

their abstraction process, they transform this intermediate term into one using their distinctive
indexed combinators. It is this final term whose storage requirement, in the worst case, is
of the order O(n). Algorithm (L), however, produces an abstract which requires a similar
amount of storage space directly, without producing any intermediate code. Furthermore, yn-
strings are simpler to handle than Broda–Damas indices. They are, after all, just bit-strings
and thus capable of being easily stored and manipulated by a computer program. It is true
that Bunder’s two expedited versions of the Broda–Damas algorithm do not produce the long-
winded intermediate code produced by the original Broda–Damas algorithm. However, when
applied to an input term which is not an atom, algorithm (L) is called fewer than half as many
times, in the worst case, to produce an abstract than the better of Bunder’s two expedited
algorithms, as I will now show. Bunder’s better algorithm is called exactly 2p− 1 times if the
abstraction variable occurs p times in the input term [4, p. 1850]. Thus, its worst behaviour
occurs if the abstraction variable occurs n times in the input term, where n is the length of the
input term. It is then called 2n − 1 times. Algorithm (L) behaves worst when rpx (x, P ) has
its maximum value, where x is the abstraction variable and P is the input term. In this case,
(L) is called at most n− 1 times, where n = #P .

6 Multi-sweep, Multi-variate Abstraction

I now turn my attention to using algorithm (L) to carry out multi-sweep, multi-variate abstrac-
tion. Here is an example:

[x] [y] [z] x y z (z x z) = [x] [y] nnyy x y I ([z] z x z)

= [x] [y] nnyy x y I (yny I x I)
= [x] nnynn nnyy x I I ([y] yny I x I)
= [x] nnynn nnyy x I I (nnnn yny I x I)
= nnynny nnynn nnyy I I I ([x] nnnn yny I x I)
= nnynny nnynn nnyy I I I (nnnyn nnnn yny I I I).

Result (b) of Lemma 4 is needed in the proof of Theorem 5, which establishes a funda-
mental property about using (L) to perform several abstractions one after the other.

Lemma 4 Using algorithm (L) we have that (a) rp(P ) = rp([x]P ) and that (b) rpx (y, P ) =
rpx (y, [x]P ).

Proof The proof of both these results is quite similar and both proceed by complete induction
on the length of P . The proof of part (b) is slightly more difficult, so only that will be given
here. In the base case #P = 1. We consider three cases. Either P is x or y or R, where
R is an atom distinct from both x and y. In each of these cases rpx (y, P ) = 0. If P ≡ x,
then [x]P = y I. If P ≡ y, then [x]P = n y. If P ≡ R, then [x]P = n R. In each case
rpx (y, [x]P ) = 0. Thus, the base case has been established.

In the inductive step we need to show that the result holds for P on the assumption that it
holds for all terms R such that 1 ≤ #R < #P . Let P ≡ P1 P2 . . . Pm, where P1 is an atom.



Antoni Diller 11

Then, unpacking the meaning of rpx , we need to show that for each i, such that 1 ≤ i ≤ m,
the conditional

if Pi �≡ y and y ∈ FV(Pi) then 1 + rpx (y, Pi) else 0

has the same value as the conditional

if Qi �≡ y and y ∈ FV(Qi) then 1 + rpx (y,Qi) else 0,

where [x] P = φ Q1 Q2 . . . Qm and φ and the Qi, for 1 ≤ i ≤ m, are as specified by
algorithm (L) in Fig. 1. The following three cases are mutually exclusive: (i) Pi �≡ y and
y ∈ FV(Pi), (ii) Pi ≡ y and (iii) y �∈ FV(Pi). The strategy of the proof is to show that in each
of these three cases the above two conditionals have the same value.

(i) When Pi �≡ y and y ∈ FV(Pi), there are two sub-cases to consider, namely either
x �∈ FV(Pi) or x ∈ FV(Pi) and Pi �≡ x. In the first of these, Qi ≡ Pi, by (L), and thus
rpx (y, Pi) = rpx (y,Qi). In the second sub-case, Qi = [x]Pi and so Qi �≡ y and y ∈ FV(Qi).
Thus, rpx (y, Pi) = rpx (y,Qi), by the inductive hypothesis. Thus, in both sub-cases the
values of the above conditionals are the same.

(ii) When Pi ≡ y, then Qi ≡ Pi and the value of both conditionals is 0.
(iii) When y �∈ FV(Pi), there are three sub-cases to consider, namely either Pi ≡ x or

x �∈ FV(Pi) or Pi �≡ x and x ∈ FV(Pi). In the first sub-case, Qi ≡ I, thus y �∈ FV(Qi) and
the value of both the above conditionals is 0. In the second sub-case, Qi ≡ Pi and the value of
both the above conditionals is 0. In the third sub-case, Qi = [x]Pi, where Pi �≡ x. Abstraction
does not introduce variables into the abstract, so y �∈ FV(Qi) and the value of both the above
conditionals is 0.

This establishes the inductive step and the result follows by complete induction. QED.

Note that algorithm (L) would not have the property that rp(P ) = rp([x]P ) if P1 in
the specification of its operation given in Fig. 1 was not required to be an atom. Let Q ≡
yzw(xx). Then Q provides a counter-example when P1 is taken to be yzw. We have that
[x]Q = ny (y z w) (yy I I), so rp(Q) = 1, but rp([x]Q) = 2. Note also that (L) would not
have the property that rpx (y, P ) = rpx (y, [x]P ), if it contained the clause [x]Ex = E, where
x �∈ FV(E). A counter-example is provided by z(yx). We have that rpx

�
y, z(yx)

�
= 1, but

rpx
�
y, [x]z(yx)

�
= 0 as [x]z(yx) would be ny y.

Theorem 5 If #P ≥ 2 and the xi, for 1 ≤ i ≤ a are distinct variables, then

#([xa]([xa−1](. . . ([x2]([x1]P )) . . .))) = a+#P +
a�

i=1

rpx (xi, P ).

Proof The proof is by induction on a. It makes use of part (c) of Theorem 2 and part (b) of
Lemma 4. The proof is straightforward and so I do not include it here. QED.

Each time (L) is called it introduces one new yn-string into the abstract. Therefore, the
total number of new yn-strings in the abstract is the number of times (L) was called to produce
that abstract. Thus, when used to abstract a different variables from a term P , of length n,



12 Efficient Bracket Abstraction

where n > 1, (L) is called a +
�a

i=1 rpx (xi, P ) times. That is to say, (L) is called at most
a(n− 1) times.

Although fewer than an new yn-strings are introduced into the abstract produced by (L)
when it is used to abstract a different variables from a term of length n, where n > 1, a lot
of space is required to store these yn-strings. To calculate the space complexity of (L) we
need first, using Theorem 3, to calculate an upper bound for the number of new iconic letters
introduced when (L) is used to abstract a different variables from a term P of length n, where
n > 1. Let T0 ≡ P and let Ti = [xi]Ti−1, for 1 ≤ i ≤ a. Then the total number of new
iconic letters introduced is

�a
i=1 il(xi, Ti−1), where il(xi, Ti−1) ≤ #Ti−1 + rpx (xi, Ti−1),

for 1 ≤ i ≤ a. To appreciate how an upper bound for this summation can be calculated,
consider the first three terms:

il(x1, T0) ≤ #T0 + rpx (x1, T0),

il(x2, T1) ≤ #T1 + rpx (x2, T1) ≤ 1 + #T0 + rpx (x1, T0) + rpx (x2, T1),

by Theorem (2c),

il(x3, T2) ≤ #T2 + rpx (x3, T2) ≤ 1 + #T1 + rpx (x2, T1) + rpx (x3, T2),

by Theorem (2c),

≤ 1 + 1 +#T0 + rpx (x1, T0) + rpx (x2, T1) + rpx (x3, T2),

by Theorem (2c). Using the fact that rpx (x, P ) ≤ rp(P ), for all variables x and terms P , we
have that

a�

i=1

il(xi, Ti−1) ≤
a�

i=1

(i− 1) + #T0 + i× rp(P )

≤ (a− 1)a

2
+ an+

a(a+ 1)(n− 2)

2
,

using the fact that rp(P ) ≤ n − 2, when #P = n and n > 1. Every constant in the input
term reappears in the abstract, as does each variable distinct from every abstraction variable.
Occurrences of variables, in the input term, identical to any of the abstraction variables are
replaced by occurrences of I in the abstract. Thus, taking the storage requirements of these
constants and variables into account and assuming each iconic letter takes up the same storage
space as a variable or non-iconic combinator, the maximum amount of space required to store
the abstract is (a−1)a/2+an+a(a+1)(n−2)/2. Thus, the worst-case space complexity of (L)
when used to abstract a different variables from a term of length n, where n > 1, is O(a2n).
This is disappointing. Algorithm (L) only introduces a small number of combinators when it is
used, but the yn-strings that are introduced get longer and longer with each abstraction. This
is a pity given how good (L) is at performing a single abstraction. The cause of the quadratic
growth in the number of iconic letters introduced is not difficult to find. It is due solely to
increasing numbers of the iconic letter n that are needed at the start of the yn-strings that
are introduced with each abstraction. If these could be eliminated, then the number of iconic
letters introduced would only grow linearly. Fortunately, it is possible to do this, but only by
using an array representation for combinators, as I will now explain.



Antoni Diller 13

In this algorithm the variables xi and xj , for 1 ≤ i, j ≤ a, in the bracket prefix
[x1, x2, . . . , xa] are the same iff i = j. Furthermore, P1 must be an atom.

[x1, x2, . . . , xa] P1 P2 . . . Pm = γ Q1 Q2 . . . Qm,

where γ is an yn-array and, for 1 ≤ i ≤ a and 1 ≤ j ≤ m,

γi,j =

�
y, if xi ∈ FV(Pj),

n, otherwise;

and, for 1 ≤ j ≤ m,

Qj ≡






I, if Pj ≡ xi, for some i such that 1 ≤ i ≤ a,

Pj , if xi �∈ FV(Pj), for any i such that 1 ≤ i ≤ a,

[xfj(1), xfj(2), . . . , xfj(qj)] Pj , otherwise;

where qj = tv([x1, . . . , xa], Pj) and, for 1 ≤ k ≤ qj , fj(k) = inx (k, [x1, . . . , xa], Pj).

Figure 2: Algorithm (M).

7 Single-sweep, Multi-variate Abstraction

Algorithm (M) is shown in Fig. 2. The main properties of (M) are proved elsewhere [6], but
some new results will be mentioned here.

(M) uses an array representation for combinators. A yn-array is a two-dimensional matrix
in which each component is either y or n. Let [−→x ] = [x1, x2, . . . , xa]. Then the value of the
function tv([−→x ], P ) is the total number of variables in the list −→x that actually occur in the term
P . For example, tv([x1, x2, x3], x1x3) = 2. The function inx (i, [−→x ], P ) returns the index of
the ith variable in the list −→x that occurs in P . For example, inx (1, [x1, x2, x3], x2x3(x1x2)) =
2. The element γi,j of the yn-array γ tells us whether or not xi occurs in Pj . A letter y says
that it does and an n tells us that it does not. An example should make its operation clear:

[x, y, z] x y z (z x z) =

������

y n n y
n y n n
n n y y

������
I I I ([x, z] z x z)

=

������

y n n y
n y n n
n n y y

������
I I I

�����
n y n
y n y

���� I I I
�
.

There is a relation between yn-strings and yn-arrays. Let P ≡ P1 P2 . . . Pm. Then

[x1] P = β1,1β1,2 . . .β1,m Q1
1 Q

1
2 . . . Q1

m,

[x2] P = β2,1β2,2 . . .β2,m Q2
1 Q

2
2 . . . Q2

m,

. . .

[xa] P = βa,1βa,2 . . .βa,m Qa
1 Q

a
2 . . . Qa

m,



14 Efficient Bracket Abstraction

where the yn-strings and the Qi
j , for 1 ≤ i ≤ a and 1 ≤ j ≤ m, are as specified by

algorithm (L) as shown in Fig. 1. But we also have that

[x1, x2, . . . , xa] P = γ Q1 Q2 . . . Qm,

where the yn-array γ and the Qj , for 1 ≤ j ≤ m are as specified by (M) as shown in Fig. 2.
The connection between these is that γi,j = βi,j , for 1 ≤ i ≤ a and 1 ≤ j ≤ m. (The
connection between the Qj and the Qi

j is more complicated and is not relevant here.) This
connection, which is not mentioned in my earlier paper [6], is a straightforward consequence
of the definitions of (L) and (M).

It is clear that the number of iconic letters introduced by (M), when it is used to abstract
a different variables, is exactly the same as the number of iconic letters introduced in the
a separate applications of (L) shown in the previous paragraph. Thus, when (M) is used to
abstract a variables from a term of length n, the maximum space required to store the abstract
is (3n − 2)a. Thus, in the worst case, the space required to store the abstract is of the order
O(an). This result is not found in my earlier paper [6]. It is only by using the results proved in
this paper that the space complexity of (M) can be accurately stated. In that earlier paper, the
size of the abstract produced by (M) was shown to be, in the worst case, of the order O(an2).
(The space complexity of (M) follows from Theorem 3 and the fact that the a abstractions are
performed simultaneously. Thus, the length of the input term is the same for all of them. Thus,
a×

�
#P + rp(P )

�
is an upper bound on the number of iconic letters introduced.)

8 Conclusion

In this paper some fundamental properties of a new uni-variate bracket abstraction algorithm
using an iconic representation for combinators have been established. When the length of
the input term is n, where n > 1, the space required to store the abstract produced by (L)
is, in the worst case, of the order O(n). This compares favourably with other well-known
algorithms and is the same as that of the Broda–Damas algorithm. In the worst case, the
space required to store the abstract produced by Turner’s algorithm is of the order O(n2) [10,
p. 279], that produced by the director-string algorithm [9] and by a typical super-combinator
algorithm [10, p. 279] are both of the order O(n lnn) and that produced by the algorithm of
Broda and Damas is of the order O(n) [2, p. 737]. The multiplication factor in the case of the
Broda–Damas algorithm is 3 as it is in the case of (L).

(L) also produces an abstract efficiently. If the length of the input term is n, where n > 1,
the algorithm is always called fewer than n times. This compares favourably with Turner’s
algorithm, which is called, in the worst case, in the order of O(n) times [10, p. 279] and
with a typical super-combinator algorithm, which is called, in the worst case, in the order of
O(n lnn) times [10, p. 279]. Furthermore, in the worst case for both algorithms, (L) is called
fewer than half as many times as the better of Bunder’s two expedited algorithms. (Figures for
the other algorithms mentioned are not available.) Therefore, when (L) is used to perform a
single abstraction, it is, for the reasons given, slightly better than any of the other uni-variate
algorithms mentioned.

When (L) is used to abstract a different variables from a term of length n, where n > 1, the
situation is not as good. In this case, the space required to store the abstract, in the worst case,



Antoni Diller 15

is of the order O(a2n). This is disappointing, and surprising, because (L) is so good at per-
forming single abstractions and because fewer than an iconic representations are introduced
into the abstract when it is used. Thus, the cause of the inefficiency is not that (L) introduces
lots of combinators, but rather the increasing length of the yn-strings that are introduced. This
inefficiency can be remedied by introducing an array representation for combinators, as I have
done elsewhere [6], but the resulting algorithm, called (M), is no longer a multi-sweep, multi-
variate one. It is, rather, a single-sweep, multi-variate algorithm. There is, however, a close
connection between the yn-arrays produced by (M), when it is used to abstract a different vari-
ables from an input term, and the a yn-strings produced by (L) when it is applied separately to
the same input term. In the worst case, the space required to store the abstract (M) produces is
of the order O(an). The space complexity of (M) can only be stated so accurately by making
use of the results proved in this paper about (L). Unfortunately, there are no single-sweep,
multi-variate algorithms employing Broda–Damas indices, director strings, supercombinators
or Turner’s long-reach combinators B�, C� and S� with which to compare the performance
of (M). There are very few single-sweep, multi-variate algorithms in the literature. Since the
resurgence of interest in bracket abstraction, due to the influence of computer science, only two
(apart from mine), to the best of my knowledge, have been published, namely those of Abdali
[1] and Piperno [11]. Concerning the complexity of his algorithm, Abdali simply states that
the size of the abstract his algorithm produces is proportional to the size of the input term [1,
p. 222]. Piperno, like me, distinguishes between the length of the abstract produced by his
algorithm and the space required to store that abstract [11, p. 49], but he only estimates the
length in his paper and not the storage requirement. By Piperno’s algorithm, the length of
the abstract [−→x ]P is less than or equal to 5

2n − 2, where n = #P [11, p. 49], whereas for
algorithm (M), the length of the abstract [−→x ]P is less than or equal to 2n−1 [6, p. 316]. Thus,
(M) is slightly better.

I readily admit that, although slightly better than the best of their rivals, algorithms (L)
and (M) are not huge improvements over them. However, I believe they have several features
that make them interesting and worthy of further consideration. There is, for example, a
natural correspondence between yn-strings and the structure of a term of combinatory logic.
Furthermore, the connection between the use of (L) to perform multi-sweep, multi-variate
abstraction and the use of (M) to carry out single-sweep, multi-variate abstraction is unique in
the world of bracket abstraction.

References

[1] S. K. Abdali. An abstraction algorithm for combinatory logic. The Journal of Symbolic

Logic, 41:222–224, 1976.

[2] Sabine Broda and Luis Damas. Compact bracket abstraction in combinatory logic. The

Journal of Symbolic Logic, 62(3):729–740, September 1997.

[3] M. W. Bunder. Some improvements to Turner’s algorithm for bracket abstraction. The

Journal of Symbolic Logic, 55:656–669, 1990.



16 Efficient Bracket Abstraction

[4] Martin Bunder. Expedited Broda–Damas bracket abstraction. The Journal of Symbolic

Logic, 65(4):1850–1857, December 2000.

[5] Antoni Diller. Compiling Functional Languages. Wiley, Chichester, 1988.

[6] Antoni Diller. Efficient multi-variate abstraction using an array representation for com-
binators. Information Processing Letters, 84:311–317, 2002.

[7] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and λ-calculus.
Cambridge University Press, Cambridge, 1986. London Mathematical Society Student
Texts, vol. 1.

[8] M. S. Joy, V. J. Rayward-Smith, and F. W. Burton. Efficient combinator code. Computer

Languages, 10:211–224, 1985.

[9] J. R. Kennaway and M. R. Sleep. Variable abstraction in O(n log n) space. Information

Processing Letters, 24:343–349, 1987.

[10] S. L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall International series in computer science. Prentice-Hall International, Lon-
don, 1987.

[11] A. Piperno. A compositive abstraction algorithm for combinatory logic. In H. Ehrig,
R. Kowalski, G. Levi, and U. Montanari, editors, TAPSOFT ’87, volume 250 of Lecture

Notes in Computer Science, pages 39–51, Berlin, 1987. Springer-Verlag.

[12] M. Schönfinkel. Über die bausteine der mathematischen logik. Mathematische Annalen,
92:305–316, 1924.

[13] David Stevens. Variable substitution with iconic combinators. In Andrzej M.
Borzyszkowski and Stefan Sokołowski, editors, Mathematical Foundations of Computer

Science, volume 711 of Lecture Notes in Computer Science, pages 724–733, Berlin,
1993. Springer-Verlag.

[14] David A. Turner. Another algorithm for bracket abstraction. The Journal of Symbolic

Logic, 44:267–270, 1979.

[15] David A. Turner. A new implementation technique for applicative languages. Software—

Practice and Experience, 9:31–49, 1979.


