
Haskell Exercises 7: Tuples

Antoni Diller

26 July 2011

(1) An association list is a list of 2-tuples. For example, [("temp", 34), ("height",
80), ("weight", 180), ("depth", 7)]. Define a function domain :: Eq a ⇒
[(a, b)] → [a] which takes an association list and returns the list of all those
things that occur in the first component of each tuple. Make sure that the value
of domain does not contain any duplicates.

(2) Define a function range :: Eq a ⇒ [(a, b)] → [b] which takes an association list
and returns the list of all those things that occur in the second component of
each tuple. Make sure that the value of range does not contain any duplicates.

(3) Define a function compose :: [(a, b)] → [(b, c)] → [(a, c)] such that a tuple (x, z)
is in the list returned as the value of the function compose ass1 ass2 iff (x, y) is
in ass1 and (y, z) is in ass2 . For example, compose [(1, 2), (7, 11)] [(2,
3), (11, 14)] is [(1, 3), (7, 14)].

(4) Define a function inverse :: [(a, b)] → [(b, a)] such that a tuple (y, x) is in
inverse ass iff (x, y) is in ass.

(5) A homogeneous association list is one whose tuples contain elements belonging
to the same type. Define a function reflexive :: Eq a ⇒ [(a, a)] → Bool which
tests to see if a homogeneous association list is reflexive, that is to say, if either
(x, y) or (y, x) is in ass, then (x, x) is also in ass.

(6) Define a function symmetric :: Eq a ⇒ [(a, a)] → Bool which tests to see if a
homogeneous association list is symmetric, that is to say, if (x, y) is in ass, then
so is (y, x).

(7) Define a function transitive :: Eq a ⇒ [(a, a)] → Bool which tests to see if a
homogeneous association list ass is transitive, that is to say, if (x, y) and (y, z)
are in ass, then so is (x, z).

(8) Define a function closure :: [(a, a)]→ [(a, a)] which takes an arbitrary association
list ass and produces the reflexive, transitive closure of ass, that is to say, if (x, y)
and (y, z) are in ass, then (x, y), (y, z) and (x, z) are all in closure ass.

(9) Define the function pairs such that pairs i is the list of all distinct pairs of integers
(x, y) such that 1 ≤ x, y ≤ i. For example,

pairs 3 = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)].

1



(10) Using the function zip define the infinite list factlist of factorials.

(11) A curried function f of n Boolean arguments is called tautologous if it returns
True for every one of the 2n possible combinations of Boolean arguments. Write
a function taut so that taut n f is True is and only if f is tautologous.

2


