
Haskell Exercises 6: fold functions

Antoni Diller

26 July 2011

(1) Using the higher-order function foldr define a function sumsq which takes an
integer n as its argument and returns the sum of the squares of the first n
integers. That is to say,

sumsq n = 12 + 22 + 32 + . . . + n2.

Do not use the function map.

(2) Define length, which returns the number of elements in a list, using foldr . Rede-
fine it using foldl .

(3) Define minlist , which returns the smallest integer in a non-empty list of integers,
using foldr1 . Redefine it using foldl1 .

(4) Define reverse, which reverses a list, using foldr .

(5) Using foldr , define a function remove which takes two strings as its arguments
and removes every letter from the second list that occurs in the first list. For
example, remove "first" "second" = "econd".

(6) Define filter using foldr . Define filter again using foldl .

(7) The function remdups removes adjacent duplicates from a list. For example,

remdups [1, 2, 2, 3, 3, 3, 1, 1] = [1, 2, 3, 1].

Define remdups using foldr . Give another definition using foldl .

(8) The function inits returns the list of all initial segments of a list. Thus, inits
"ate" = [[], "a", "at", "ate"]. Define inits using foldr .

(9) Using foldl define approxe n such that

approxe n =
i=n∑
i=0

1
i!

.

1



For example,

approxe 4 =
1
0!

+
1
1!

+
1
2!

+
1
3!

+
1
4!

,

= 1 + 1 + 0.5 + 0.3̇ + 0.25,

= 3.083̇,

where 0.3̇ means ‘point 3 recurring’.

(10) Using scanl define a function sae (successive approximations to e) such that

sae n =

[
i=1∑
i=0

1
i!

,

i=2∑
i=0

1
i!

,

i=3∑
i=0

1
i!

, . . . ,

i=n∑
i=0

1
i!

]
.

(11) Define iterate using scanl .

(12) Define shift , which sticks the first element of a list at the end. Thus, shift [1,
2, 3] = [2, 3, 1] and shift "eat" = "ate". Unsing foldl and shift define
rotate, which produces all the rotations of a list. Thus, rotate [1, 2, 3] =
[[1, 2, 3], [2, 3, 1], [3, 1, 2]].

(13) The function add can be defined in terms of

succ i = i + 1
pred i = i - 1

by the equations

add i 0 = i
add i j = succ (add i (pred j))

(a) Give a similar definition of mult which uses only add and prede. Give a
definition of exp which uses only mult and prede. What is the next function
in this sequence?

(b) The fold function on integers foldi can be defined as follows:

foldi :: (a -> a) -> a -> Int -> a
foldi f q 0 = q
foldi f q i = f (foldi f q (pred i))

Define the functions add , mult and exp in terms of foldi .

(c) Define the functions fact (factorial) and fib (Fibonacci numbers) using the
function foldi .

2


