
Haskell Exercises 4: ZF-expressions

Antoni Diller

26 July 2011

(1) Define a function unique :: [Int ] → [Int ] which returns the list of numbers in a
list that occur exactly once in that list. For example, unique [2, 4, 2, 1, 4] = [1].

(2) Redefine the function member , explained in question (2.10), using a list compre-
hension (that is to say, a ZF-expression).

(3) Consider the list of numbers wirth defined as follows:

(i) 1 is a member of wirth.

(ii) If x is a member of wirth, then so are 2× x + 1 and 3× x + 1.

(iii) These are the only elements of wirth.

Give a definition of wirth which produces the elements in increasing order.

(4) Define the function sumsq , which takes an integer n as its argument and returns
the sum of the squares of the first n integers, using a ZF-expression.

(5) Using a ZF-expression define a Boolean-valued function prime such that prime i =
True if and only if i is a prime number.

(6) Using a ZF-expression define the function factors such that factors n is the list
of all the factors of n in increasing order. For example, factors 6 = [1, 2, 3, 6].

(7) A number n is said to be perfect if the factors of n, including 1 but excluding n,
add up to n. For example, 6 is perfect becasue 6 = 1 + 2 + 3. Using the function
factors from question (6) define the list of all perfect numbers.

(8) Define a function perms which takes a finite list xs as its argument and returns
the list of all the permutations of xs.

(9) Define a function isSquare which tests to see if a positive number is equal to the
square of some integer. For example,

isSquare 7 = False,

isSquare 16 = True.

1



(10) Using a single list-comprehension define the gcd function. Call your function
gcdlist . The gcd function can be defined like this:

gcd(i, j) = i, if j = 0
= gcd(j, i mod j), if j 6= 0

(11) Define the function power using a list-comprehension, where

power x n = xn.

Here, x can be any number, but n must be an integer (either positive, negative
or zero).

(12) The function iteraten is defined as follows:

iteraten :: Int -> (a -> a) -> a -> a
iteraten 0 f x = x
iteraten n f x = iteraten (n - 1) f (f x)

Define a function limit such that limit f x = iteraten n f x where n is the least
number such that iteraten n f x = iteraten (n + 1) f x

2


