Haskell Unit 4: ZF-expressions

Antoni Diller
26 July 2011

Introduction

A ZF-expression has the following form:

\[
[\ x * x \mid x \leftarrow [1, 2, 7, 12], \text{even } x \]
\]

This is a very convenient way of defining a list. The above ZF-expression is the list of all those things of the form \(x * x \) such that \(x \) is drawn from the list \([1, 2, 7, 12]\) and \(x \) is even. The above ZF-expression evaluates to \([4, 144]\).

The general format of a ZF-expression is:

\[
[\ \text{EXP} \mid \text{QUAL, \ldots, QUAL} \]
\]

where QUAL is either a Boolean-valued expression or a generator. A generator is something of the form:

\[
\text{VARIABLE} \leftarrow \text{LIST}
\]
\[
\text{PATTERN} \leftarrow \text{LIST}
\]

Reduction rules for ZF-expressions

(ZF1) \([\ \text{e} \mid \text{v} \leftarrow [] , \text{q} \] \) reduces to \([\]\), where \(q \) is zero or more qualifiers.

(ZF2) \([\ \text{e} \mid \text{v} \leftarrow f:fs , \text{q} \] \) reduces to \([\ \text{e} \mid \text{q} \] [\ v := f \] ++ [\ \text{e} \mid \text{v} \leftarrow fs , \text{q} \] \), where \(h [\ v := f \] \) represents \(h \) with all occurrences of \(v \) in it replaced by \(f \).

(ZF3) \([\ \text{e} \mid \text{False} , \text{q} \] \) reduces to \([\]\).

(ZF4) \([\ \text{e} \mid \text{True} , \text{q} \] \) reduces to \([\ \text{e} \mid \text{q} \]\).

(ZF5) \([\ \text{e} \] \) reduces to \([\ \text{e} \]\).

1
Quicksort

ZF-expressions allow a very concise definition of Hoare’s Quicksort algorithm:

\[
\begin{align*}
\text{quick}~[\] &= [] \\
\text{quick}~[x] &= [x] \\
\text{quick}~(x:xs) &= \text{quick}~[u \mid u \leftarrow xs, u < x] ++ [x] ++ \\
&\quad \text{quick}~[u \mid u \leftarrow xs, u \geq x]
\end{align*}
\]