
Haskell Answers 4:ZF-expressions

Antoni Diller

4 August 2011

(1) Define a function unique :: [Int] → [Int] which returns the list of numbers in a
list that occur exactly once in that list. For example, unique [2, 4, 2, 1, 4] = [1].

unique :: [Int] -> [Int]

unique xs = [x | x <- xs, memberNum xs x == 1]

(2) Redefine the function member , explained in question (2.10), using a list compre-
hension (that is to say, a ZF-expression).

member2 :: [Int] -> Int -> Bool

member2 xs y = or [y == x | x <- xs]

(3) Consider the list of numbers wirth defined as follows:

(i) 1 is a member of wirth.

(ii) If x is a member of wirth, then so are 2× x + 1 and 3× x + 1.

(iii) These are the only elements of wirth.

Give a definition of wirth which produces the elements in increasing order.

wirth :: [Integer]

wirth = 1 : merge [2*x + 1 | x <- wirth] [3*x + 1 | x <- wirth]

merge :: Ord a => [a] -> [a] -> [a]

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys)

| x == y = x : merge xs ys

| x < y = x : merge xs (y:ys)

| x > y = y : merge (x:xs) ys

1

(4) Define the function sumsq , which takes an integer n as its argument and returns
the sum of the squares of the first n integers, using a ZF-expression.

sumsq3 :: Integral a => a -> a

sumsq3 n = sum [i*i | i <- [1..n]]

(5) Using a ZF-expression define a Boolean-valued function prime such that prime i =
True if and only if i is a prime number.

prime :: Integral a => a -> Bool

prime i = and [i ‘rem‘ j /= 0 | j <- [2..(i-1)]]

(6) Using a ZF-expression define the function factors such that factors n is the list
of all the factors of n in increasing order. For example, factors 6 = [1, 2, 3, 6].

factors :: Integral a => a -> [a]

factors n = [i | i <- [1..n], n ‘rem‘ i == 0]

(7) A number n is said to be perfect if the factors of n, including 1 but excluding n,
add up to n. For example, 6 is perfect becasue 6 = 1 + 2 + 3. Using the function
factors from question (6) define the list of all perfect numbers.

perfect :: Integral a => a -> Bool

perfect n = sum (factors n) == 2 * n

perfectList :: [Integer]

perfectList = [i | i <- [1..], perfect i]

(8) Define a function perms which takes a finite list xs as its argument and returns
the list of all the permutations of xs.

2

(\\) :: Eq a => [a] -> [a] -> [a]

(\\) = foldl del where del [] _ = []

del (x:xs) y

| x == y = xs

| otherwise = x:del xs y

perms :: Eq a => [a] -> [[a]]

perms [] = [[]]

perms xs = [y:ys | y <- xs, ys <- perms (xs \\ [y])]

(9) Define a function isSquare which tests to see if a positive number is equal to the
square of some integer. For example,

isSquare 7 = False,

isSquare 16 = True.

squares :: [Integer]

squares = [i*i | i <- [1..]]

auxisSquare :: Ord a => a -> [a] -> Bool

auxisSquare x (s:ss)

| x == s = True

| x > s = auxisSquare x ss

| x < s = False

isSquare :: Integer -> Bool

isSquare x = auxisSquare x squares

(10) Using a single list-comprehension define the gcd function. Call your function
gcdlist . The gcd function can be defined like this:

gcd(i, j) = i, if j = 0

= gcd(j, i mod j), if j 6= 0

(11) Define the function power using a list-comprehension, where

power x n = xn.

Here, x can be any number, but n must be an integer (either positive, negative
or zero).

3

(12) The function iteraten is defined as follows:

iteraten :: Int -> (a -> a) -> a -> a

iteraten 0 f x = x

iteraten n f x = iteraten (n - 1) f (f x)

Define a function limit such that limit f x = iteraten n f x where n is the least
number such that iteraten n f x = iteraten (n + 1) f x

itlist f x = [iteraten n f x | n <- [0..]]

test (x:y:xs)

| x == y = x

| otherwise = test (y:xs)

limit f x = test (itlist f x)

4

